Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p8d2.1 |
|- ( ph -> R e. NN ) |
2 |
|
aks4d1p8d2.2 |
|- ( ph -> N e. NN ) |
3 |
|
aks4d1p8d2.3 |
|- ( ph -> P e. Prime ) |
4 |
|
aks4d1p8d2.4 |
|- ( ph -> Q e. Prime ) |
5 |
|
aks4d1p8d2.5 |
|- ( ph -> P || R ) |
6 |
|
aks4d1p8d2.6 |
|- ( ph -> Q || R ) |
7 |
|
aks4d1p8d2.7 |
|- ( ph -> -. P || N ) |
8 |
|
aks4d1p8d2.8 |
|- ( ph -> Q || N ) |
9 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
10 |
3 9
|
syl |
|- ( ph -> P e. NN ) |
11 |
10
|
nnred |
|- ( ph -> P e. RR ) |
12 |
3 1
|
pccld |
|- ( ph -> ( P pCnt R ) e. NN0 ) |
13 |
11 12
|
reexpcld |
|- ( ph -> ( P ^ ( P pCnt R ) ) e. RR ) |
14 |
|
prmnn |
|- ( Q e. Prime -> Q e. NN ) |
15 |
4 14
|
syl |
|- ( ph -> Q e. NN ) |
16 |
15
|
nnred |
|- ( ph -> Q e. RR ) |
17 |
13 16
|
remulcld |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) x. Q ) e. RR ) |
18 |
1
|
nnred |
|- ( ph -> R e. RR ) |
19 |
13
|
recnd |
|- ( ph -> ( P ^ ( P pCnt R ) ) e. CC ) |
20 |
19
|
mulid1d |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) x. 1 ) = ( P ^ ( P pCnt R ) ) ) |
21 |
|
1red |
|- ( ph -> 1 e. RR ) |
22 |
10
|
nnrpd |
|- ( ph -> P e. RR+ ) |
23 |
12
|
nn0zd |
|- ( ph -> ( P pCnt R ) e. ZZ ) |
24 |
22 23
|
rpexpcld |
|- ( ph -> ( P ^ ( P pCnt R ) ) e. RR+ ) |
25 |
|
prmgt1 |
|- ( Q e. Prime -> 1 < Q ) |
26 |
4 25
|
syl |
|- ( ph -> 1 < Q ) |
27 |
21 16 24 26
|
ltmul2dd |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) x. 1 ) < ( ( P ^ ( P pCnt R ) ) x. Q ) ) |
28 |
20 27
|
eqbrtrrd |
|- ( ph -> ( P ^ ( P pCnt R ) ) < ( ( P ^ ( P pCnt R ) ) x. Q ) ) |
29 |
10
|
nnzd |
|- ( ph -> P e. ZZ ) |
30 |
29 12
|
zexpcld |
|- ( ph -> ( P ^ ( P pCnt R ) ) e. ZZ ) |
31 |
15
|
nnzd |
|- ( ph -> Q e. ZZ ) |
32 |
1
|
nnzd |
|- ( ph -> R e. ZZ ) |
33 |
30 31
|
gcdcomd |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) gcd Q ) = ( Q gcd ( P ^ ( P pCnt R ) ) ) ) |
34 |
|
0lt1 |
|- 0 < 1 |
35 |
34
|
a1i |
|- ( ph -> 0 < 1 ) |
36 |
|
0red |
|- ( ph -> 0 e. RR ) |
37 |
36 21
|
ltnled |
|- ( ph -> ( 0 < 1 <-> -. 1 <_ 0 ) ) |
38 |
35 37
|
mpbid |
|- ( ph -> -. 1 <_ 0 ) |
39 |
16
|
recnd |
|- ( ph -> Q e. CC ) |
40 |
39
|
exp1d |
|- ( ph -> ( Q ^ 1 ) = Q ) |
41 |
40
|
eqcomd |
|- ( ph -> Q = ( Q ^ 1 ) ) |
42 |
41
|
oveq2d |
|- ( ph -> ( Q pCnt Q ) = ( Q pCnt ( Q ^ 1 ) ) ) |
43 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
44 |
|
pcid |
|- ( ( Q e. Prime /\ 1 e. ZZ ) -> ( Q pCnt ( Q ^ 1 ) ) = 1 ) |
45 |
4 43 44
|
syl2anc |
|- ( ph -> ( Q pCnt ( Q ^ 1 ) ) = 1 ) |
46 |
42 45
|
eqtrd |
|- ( ph -> ( Q pCnt Q ) = 1 ) |
47 |
8
|
adantr |
|- ( ( ph /\ P = Q ) -> Q || N ) |
48 |
|
breq1 |
|- ( P = Q -> ( P || N <-> Q || N ) ) |
49 |
48
|
adantl |
|- ( ( ph /\ P = Q ) -> ( P || N <-> Q || N ) ) |
50 |
49
|
bicomd |
|- ( ( ph /\ P = Q ) -> ( Q || N <-> P || N ) ) |
51 |
50
|
biimpd |
|- ( ( ph /\ P = Q ) -> ( Q || N -> P || N ) ) |
52 |
47 51
|
mpd |
|- ( ( ph /\ P = Q ) -> P || N ) |
53 |
7
|
adantr |
|- ( ( ph /\ P = Q ) -> -. P || N ) |
54 |
52 53
|
pm2.65da |
|- ( ph -> -. P = Q ) |
55 |
54
|
neqcomd |
|- ( ph -> -. Q = P ) |
56 |
|
pcelnn |
|- ( ( P e. Prime /\ R e. NN ) -> ( ( P pCnt R ) e. NN <-> P || R ) ) |
57 |
3 1 56
|
syl2anc |
|- ( ph -> ( ( P pCnt R ) e. NN <-> P || R ) ) |
58 |
5 57
|
mpbird |
|- ( ph -> ( P pCnt R ) e. NN ) |
59 |
|
prmdvdsexpb |
|- ( ( Q e. Prime /\ P e. Prime /\ ( P pCnt R ) e. NN ) -> ( Q || ( P ^ ( P pCnt R ) ) <-> Q = P ) ) |
60 |
4 3 58 59
|
syl3anc |
|- ( ph -> ( Q || ( P ^ ( P pCnt R ) ) <-> Q = P ) ) |
61 |
60
|
notbid |
|- ( ph -> ( -. Q || ( P ^ ( P pCnt R ) ) <-> -. Q = P ) ) |
62 |
55 61
|
mpbird |
|- ( ph -> -. Q || ( P ^ ( P pCnt R ) ) ) |
63 |
10 12
|
nnexpcld |
|- ( ph -> ( P ^ ( P pCnt R ) ) e. NN ) |
64 |
|
pceq0 |
|- ( ( Q e. Prime /\ ( P ^ ( P pCnt R ) ) e. NN ) -> ( ( Q pCnt ( P ^ ( P pCnt R ) ) ) = 0 <-> -. Q || ( P ^ ( P pCnt R ) ) ) ) |
65 |
4 63 64
|
syl2anc |
|- ( ph -> ( ( Q pCnt ( P ^ ( P pCnt R ) ) ) = 0 <-> -. Q || ( P ^ ( P pCnt R ) ) ) ) |
66 |
62 65
|
mpbird |
|- ( ph -> ( Q pCnt ( P ^ ( P pCnt R ) ) ) = 0 ) |
67 |
46 66
|
breq12d |
|- ( ph -> ( ( Q pCnt Q ) <_ ( Q pCnt ( P ^ ( P pCnt R ) ) ) <-> 1 <_ 0 ) ) |
68 |
67
|
notbid |
|- ( ph -> ( -. ( Q pCnt Q ) <_ ( Q pCnt ( P ^ ( P pCnt R ) ) ) <-> -. 1 <_ 0 ) ) |
69 |
38 68
|
mpbird |
|- ( ph -> -. ( Q pCnt Q ) <_ ( Q pCnt ( P ^ ( P pCnt R ) ) ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ p = Q ) -> -. ( Q pCnt Q ) <_ ( Q pCnt ( P ^ ( P pCnt R ) ) ) ) |
71 |
|
simpr |
|- ( ( ph /\ p = Q ) -> p = Q ) |
72 |
71
|
oveq1d |
|- ( ( ph /\ p = Q ) -> ( p pCnt Q ) = ( Q pCnt Q ) ) |
73 |
71
|
oveq1d |
|- ( ( ph /\ p = Q ) -> ( p pCnt ( P ^ ( P pCnt R ) ) ) = ( Q pCnt ( P ^ ( P pCnt R ) ) ) ) |
74 |
72 73
|
breq12d |
|- ( ( ph /\ p = Q ) -> ( ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) <-> ( Q pCnt Q ) <_ ( Q pCnt ( P ^ ( P pCnt R ) ) ) ) ) |
75 |
74
|
notbid |
|- ( ( ph /\ p = Q ) -> ( -. ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) <-> -. ( Q pCnt Q ) <_ ( Q pCnt ( P ^ ( P pCnt R ) ) ) ) ) |
76 |
70 75
|
mpbird |
|- ( ( ph /\ p = Q ) -> -. ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) |
77 |
76 4
|
rspcime |
|- ( ph -> E. p e. Prime -. ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) |
78 |
|
rexnal |
|- ( E. p e. Prime -. ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) <-> -. A. p e. Prime ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) |
79 |
78
|
a1i |
|- ( ph -> ( E. p e. Prime -. ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) <-> -. A. p e. Prime ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) ) |
80 |
77 79
|
mpbid |
|- ( ph -> -. A. p e. Prime ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) |
81 |
|
pc2dvds |
|- ( ( Q e. ZZ /\ ( P ^ ( P pCnt R ) ) e. ZZ ) -> ( Q || ( P ^ ( P pCnt R ) ) <-> A. p e. Prime ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) ) |
82 |
31 30 81
|
syl2anc |
|- ( ph -> ( Q || ( P ^ ( P pCnt R ) ) <-> A. p e. Prime ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) ) |
83 |
82
|
notbid |
|- ( ph -> ( -. Q || ( P ^ ( P pCnt R ) ) <-> -. A. p e. Prime ( p pCnt Q ) <_ ( p pCnt ( P ^ ( P pCnt R ) ) ) ) ) |
84 |
80 83
|
mpbird |
|- ( ph -> -. Q || ( P ^ ( P pCnt R ) ) ) |
85 |
|
coprm |
|- ( ( Q e. Prime /\ ( P ^ ( P pCnt R ) ) e. ZZ ) -> ( -. Q || ( P ^ ( P pCnt R ) ) <-> ( Q gcd ( P ^ ( P pCnt R ) ) ) = 1 ) ) |
86 |
4 30 85
|
syl2anc |
|- ( ph -> ( -. Q || ( P ^ ( P pCnt R ) ) <-> ( Q gcd ( P ^ ( P pCnt R ) ) ) = 1 ) ) |
87 |
84 86
|
mpbid |
|- ( ph -> ( Q gcd ( P ^ ( P pCnt R ) ) ) = 1 ) |
88 |
33 87
|
eqtrd |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) gcd Q ) = 1 ) |
89 |
|
pcdvds |
|- ( ( P e. Prime /\ R e. NN ) -> ( P ^ ( P pCnt R ) ) || R ) |
90 |
3 1 89
|
syl2anc |
|- ( ph -> ( P ^ ( P pCnt R ) ) || R ) |
91 |
30 31 32 88 90 6
|
coprmdvds2d |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) x. Q ) || R ) |
92 |
30 31
|
zmulcld |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) x. Q ) e. ZZ ) |
93 |
|
dvdsle |
|- ( ( ( ( P ^ ( P pCnt R ) ) x. Q ) e. ZZ /\ R e. NN ) -> ( ( ( P ^ ( P pCnt R ) ) x. Q ) || R -> ( ( P ^ ( P pCnt R ) ) x. Q ) <_ R ) ) |
94 |
92 1 93
|
syl2anc |
|- ( ph -> ( ( ( P ^ ( P pCnt R ) ) x. Q ) || R -> ( ( P ^ ( P pCnt R ) ) x. Q ) <_ R ) ) |
95 |
91 94
|
mpd |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) x. Q ) <_ R ) |
96 |
13 17 18 28 95
|
ltletrd |
|- ( ph -> ( P ^ ( P pCnt R ) ) < R ) |