| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p8d3.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
aks4d1p8d3.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
aks4d1p8d3.3 |
|- ( ph -> P || N ) |
| 4 |
|
pcdvds |
|- ( ( P e. Prime /\ N e. NN ) -> ( P ^ ( P pCnt N ) ) || N ) |
| 5 |
2 1 4
|
syl2anc |
|- ( ph -> ( P ^ ( P pCnt N ) ) || N ) |
| 6 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 7 |
2 6
|
syl |
|- ( ph -> P e. NN ) |
| 8 |
7
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 9 |
2 1
|
pccld |
|- ( ph -> ( P pCnt N ) e. NN0 ) |
| 10 |
8 9
|
zexpcld |
|- ( ph -> ( P ^ ( P pCnt N ) ) e. ZZ ) |
| 11 |
8
|
zcnd |
|- ( ph -> P e. CC ) |
| 12 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 13 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 14 |
8
|
zred |
|- ( ph -> P e. RR ) |
| 15 |
|
0lt1 |
|- 0 < 1 |
| 16 |
15
|
a1i |
|- ( ph -> 0 < 1 ) |
| 17 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 18 |
2 17
|
syl |
|- ( ph -> 1 < P ) |
| 19 |
12 13 14 16 18
|
lttrd |
|- ( ph -> 0 < P ) |
| 20 |
12 19
|
ltned |
|- ( ph -> 0 =/= P ) |
| 21 |
20
|
necomd |
|- ( ph -> P =/= 0 ) |
| 22 |
9
|
nn0zd |
|- ( ph -> ( P pCnt N ) e. ZZ ) |
| 23 |
11 21 22
|
expne0d |
|- ( ph -> ( P ^ ( P pCnt N ) ) =/= 0 ) |
| 24 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 25 |
|
dvdsval2 |
|- ( ( ( P ^ ( P pCnt N ) ) e. ZZ /\ ( P ^ ( P pCnt N ) ) =/= 0 /\ N e. ZZ ) -> ( ( P ^ ( P pCnt N ) ) || N <-> ( N / ( P ^ ( P pCnt N ) ) ) e. ZZ ) ) |
| 26 |
10 23 24 25
|
syl3anc |
|- ( ph -> ( ( P ^ ( P pCnt N ) ) || N <-> ( N / ( P ^ ( P pCnt N ) ) ) e. ZZ ) ) |
| 27 |
5 26
|
mpbid |
|- ( ph -> ( N / ( P ^ ( P pCnt N ) ) ) e. ZZ ) |
| 28 |
27 10
|
gcdcomd |
|- ( ph -> ( ( N / ( P ^ ( P pCnt N ) ) ) gcd ( P ^ ( P pCnt N ) ) ) = ( ( P ^ ( P pCnt N ) ) gcd ( N / ( P ^ ( P pCnt N ) ) ) ) ) |
| 29 |
|
pcndvds2 |
|- ( ( P e. Prime /\ N e. NN ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |
| 30 |
2 1 29
|
syl2anc |
|- ( ph -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |
| 31 |
|
coprm |
|- ( ( P e. Prime /\ ( N / ( P ^ ( P pCnt N ) ) ) e. ZZ ) -> ( -. P || ( N / ( P ^ ( P pCnt N ) ) ) <-> ( P gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 ) ) |
| 32 |
2 27 31
|
syl2anc |
|- ( ph -> ( -. P || ( N / ( P ^ ( P pCnt N ) ) ) <-> ( P gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 ) ) |
| 33 |
30 32
|
mpbid |
|- ( ph -> ( P gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 ) |
| 34 |
|
pcelnn |
|- ( ( P e. Prime /\ N e. NN ) -> ( ( P pCnt N ) e. NN <-> P || N ) ) |
| 35 |
2 1 34
|
syl2anc |
|- ( ph -> ( ( P pCnt N ) e. NN <-> P || N ) ) |
| 36 |
3 35
|
mpbird |
|- ( ph -> ( P pCnt N ) e. NN ) |
| 37 |
|
rpexp |
|- ( ( P e. ZZ /\ ( N / ( P ^ ( P pCnt N ) ) ) e. ZZ /\ ( P pCnt N ) e. NN ) -> ( ( ( P ^ ( P pCnt N ) ) gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 <-> ( P gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 ) ) |
| 38 |
8 27 36 37
|
syl3anc |
|- ( ph -> ( ( ( P ^ ( P pCnt N ) ) gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 <-> ( P gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 ) ) |
| 39 |
33 38
|
mpbird |
|- ( ph -> ( ( P ^ ( P pCnt N ) ) gcd ( N / ( P ^ ( P pCnt N ) ) ) ) = 1 ) |
| 40 |
28 39
|
eqtrd |
|- ( ph -> ( ( N / ( P ^ ( P pCnt N ) ) ) gcd ( P ^ ( P pCnt N ) ) ) = 1 ) |