Metamath Proof Explorer


Theorem aks4d1p8d3

Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024)

Ref Expression
Hypotheses aks4d1p8d3.1 φ N
aks4d1p8d3.2 φ P
aks4d1p8d3.3 φ P N
Assertion aks4d1p8d3 φ N P P pCnt N gcd P P pCnt N = 1

Proof

Step Hyp Ref Expression
1 aks4d1p8d3.1 φ N
2 aks4d1p8d3.2 φ P
3 aks4d1p8d3.3 φ P N
4 pcdvds P N P P pCnt N N
5 2 1 4 syl2anc φ P P pCnt N N
6 prmnn P P
7 2 6 syl φ P
8 7 nnzd φ P
9 2 1 pccld φ P pCnt N 0
10 8 9 zexpcld φ P P pCnt N
11 8 zcnd φ P
12 0red φ 0
13 1red φ 1
14 8 zred φ P
15 0lt1 0 < 1
16 15 a1i φ 0 < 1
17 prmgt1 P 1 < P
18 2 17 syl φ 1 < P
19 12 13 14 16 18 lttrd φ 0 < P
20 12 19 ltned φ 0 P
21 20 necomd φ P 0
22 9 nn0zd φ P pCnt N
23 11 21 22 expne0d φ P P pCnt N 0
24 1 nnzd φ N
25 dvdsval2 P P pCnt N P P pCnt N 0 N P P pCnt N N N P P pCnt N
26 10 23 24 25 syl3anc φ P P pCnt N N N P P pCnt N
27 5 26 mpbid φ N P P pCnt N
28 27 10 gcdcomd φ N P P pCnt N gcd P P pCnt N = P P pCnt N gcd N P P pCnt N
29 pcndvds2 P N ¬ P N P P pCnt N
30 2 1 29 syl2anc φ ¬ P N P P pCnt N
31 coprm P N P P pCnt N ¬ P N P P pCnt N P gcd N P P pCnt N = 1
32 2 27 31 syl2anc φ ¬ P N P P pCnt N P gcd N P P pCnt N = 1
33 30 32 mpbid φ P gcd N P P pCnt N = 1
34 pcelnn P N P pCnt N P N
35 2 1 34 syl2anc φ P pCnt N P N
36 3 35 mpbird φ P pCnt N
37 rpexp P N P P pCnt N P pCnt N P P pCnt N gcd N P P pCnt N = 1 P gcd N P P pCnt N = 1
38 8 27 36 37 syl3anc φ P P pCnt N gcd N P P pCnt N = 1 P gcd N P P pCnt N = 1
39 33 38 mpbird φ P P pCnt N gcd N P P pCnt N = 1
40 28 39 eqtrd φ N P P pCnt N gcd P P pCnt N = 1