| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p8d3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
aks4d1p8d3.2 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 3 |
|
aks4d1p8d3.3 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| 4 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ) |
| 5 |
2 1 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ) |
| 6 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 8 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 9 |
2 1
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
| 10 |
8 9
|
zexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℤ ) |
| 11 |
8
|
zcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 12 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 13 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 14 |
8
|
zred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 15 |
|
0lt1 |
⊢ 0 < 1 |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 17 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → 1 < 𝑃 ) |
| 19 |
12 13 14 16 18
|
lttrd |
⊢ ( 𝜑 → 0 < 𝑃 ) |
| 20 |
12 19
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝑃 ) |
| 21 |
20
|
necomd |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 22 |
9
|
nn0zd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℤ ) |
| 23 |
11 21 22
|
expne0d |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ≠ 0 ) |
| 24 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 25 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ∈ ℤ ) ) |
| 26 |
10 23 24 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ∈ ℤ ) ) |
| 27 |
5 26
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ∈ ℤ ) |
| 28 |
27 10
|
gcdcomd |
⊢ ( 𝜑 → ( ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) gcd ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) ) |
| 29 |
|
pcndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
| 30 |
2 1 29
|
syl2anc |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) |
| 31 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ∈ ℤ ) → ( ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ↔ ( 𝑃 gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ) ) |
| 32 |
2 27 31
|
syl2anc |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ↔ ( 𝑃 gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ) ) |
| 33 |
30 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ) |
| 34 |
|
pcelnn |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |
| 35 |
2 1 34
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |
| 36 |
3 35
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) |
| 37 |
|
rpexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ∈ ℤ ∧ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ↔ ( 𝑃 gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ) ) |
| 38 |
8 27 36 37
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ↔ ( 𝑃 gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ) ) |
| 39 |
33 38
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) gcd ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) ) = 1 ) |
| 40 |
28 39
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) gcd ( 𝑃 ↑ ( 𝑃 pCnt 𝑁 ) ) ) = 1 ) |