| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p8.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1p8.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 3 |
|
aks4d1p8.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 4 |
|
aks4d1p8.4 |
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) |
| 5 |
4
|
a1i |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) ) |
| 6 |
|
ssrab2 |
|- { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) |
| 7 |
6
|
a1i |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) ) |
| 8 |
|
elfznn |
|- ( o e. ( 1 ... B ) -> o e. NN ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. NN ) |
| 10 |
9
|
nnred |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. RR ) |
| 11 |
10
|
ex |
|- ( ph -> ( o e. ( 1 ... B ) -> o e. RR ) ) |
| 12 |
11
|
ssrdv |
|- ( ph -> ( 1 ... B ) C_ RR ) |
| 13 |
7 12
|
sstrd |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 15 |
14
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 16 |
15
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 17 |
16
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 18 |
|
fzfid |
|- ( ph -> ( 1 ... B ) e. Fin ) |
| 19 |
18 7
|
ssfid |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
| 20 |
1 2 3
|
aks4d1p3 |
|- ( ph -> E. r e. ( 1 ... B ) -. r || A ) |
| 21 |
|
rabn0 |
|- ( { r e. ( 1 ... B ) | -. r || A } =/= (/) <-> E. r e. ( 1 ... B ) -. r || A ) |
| 22 |
20 21
|
sylibr |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } =/= (/) ) |
| 23 |
|
fiminre |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin /\ { r e. ( 1 ... B ) | -. r || A } =/= (/) ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 24 |
13 19 22 23
|
syl3anc |
|- ( ph -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 26 |
25
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 27 |
26
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 28 |
27
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 29 |
|
breq1 |
|- ( r = ( R / p ) -> ( r || A <-> ( R / p ) || A ) ) |
| 30 |
29
|
notbid |
|- ( r = ( R / p ) -> ( -. r || A <-> -. ( R / p ) || A ) ) |
| 31 |
|
1zzd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> 1 e. ZZ ) |
| 32 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 33 |
|
2re |
|- 2 e. RR |
| 34 |
33
|
a1i |
|- ( ph -> 2 e. RR ) |
| 35 |
|
2pos |
|- 0 < 2 |
| 36 |
35
|
a1i |
|- ( ph -> 0 < 2 ) |
| 37 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 38 |
1 37
|
syl |
|- ( ph -> N e. ZZ ) |
| 39 |
38
|
zred |
|- ( ph -> N e. RR ) |
| 40 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 41 |
|
3re |
|- 3 e. RR |
| 42 |
41
|
a1i |
|- ( ph -> 3 e. RR ) |
| 43 |
|
3pos |
|- 0 < 3 |
| 44 |
43
|
a1i |
|- ( ph -> 0 < 3 ) |
| 45 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 46 |
1 45
|
syl |
|- ( ph -> 3 <_ N ) |
| 47 |
40 42 39 44 46
|
ltletrd |
|- ( ph -> 0 < N ) |
| 48 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 49 |
|
1lt2 |
|- 1 < 2 |
| 50 |
49
|
a1i |
|- ( ph -> 1 < 2 ) |
| 51 |
48 50
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 52 |
51
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 53 |
34 36 39 47 52
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 54 |
|
5nn0 |
|- 5 e. NN0 |
| 55 |
54
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 56 |
53 55
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
| 57 |
56
|
ceilcld |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 58 |
32 57
|
eqeltrd |
|- ( ph -> B e. ZZ ) |
| 59 |
58
|
ad4antr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> B e. ZZ ) |
| 60 |
|
simplrl |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p || R ) |
| 61 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 62 |
61
|
adantl |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> p e. NN ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p e. NN ) |
| 64 |
63
|
nnzd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p e. ZZ ) |
| 65 |
62
|
nnne0d |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> p =/= 0 ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p =/= 0 ) |
| 67 |
1 2 3 4
|
aks4d1p4 |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
| 68 |
67
|
simpld |
|- ( ph -> R e. ( 1 ... B ) ) |
| 69 |
|
elfznn |
|- ( R e. ( 1 ... B ) -> R e. NN ) |
| 70 |
68 69
|
syl |
|- ( ph -> R e. NN ) |
| 71 |
70
|
ad4antr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) -> R e. NN ) |
| 72 |
71
|
adantr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) /\ ( R / ( N gcd R ) ) || A ) -> R e. NN ) |
| 73 |
72
|
nnzd |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) /\ ( R / ( N gcd R ) ) || A ) -> R e. ZZ ) |
| 74 |
|
anass |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) <-> ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) ) |
| 75 |
74
|
anbi1i |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) /\ ( R / ( N gcd R ) ) || A ) <-> ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) ) |
| 76 |
75
|
imbi1i |
|- ( ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) /\ ( R / ( N gcd R ) ) || A ) -> R e. ZZ ) <-> ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R e. ZZ ) ) |
| 77 |
73 76
|
mpbi |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R e. ZZ ) |
| 78 |
|
dvdsval2 |
|- ( ( p e. ZZ /\ p =/= 0 /\ R e. ZZ ) -> ( p || R <-> ( R / p ) e. ZZ ) ) |
| 79 |
64 66 77 78
|
syl3anc |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( p || R <-> ( R / p ) e. ZZ ) ) |
| 80 |
60 79
|
mpbid |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) e. ZZ ) |
| 81 |
63
|
nncnd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p e. CC ) |
| 82 |
81
|
mullidd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( 1 x. p ) = p ) |
| 83 |
75 72
|
sylbir |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R e. NN ) |
| 84 |
64 83
|
jca |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( p e. ZZ /\ R e. NN ) ) |
| 85 |
|
dvdsle |
|- ( ( p e. ZZ /\ R e. NN ) -> ( p || R -> p <_ R ) ) |
| 86 |
85
|
imp |
|- ( ( ( p e. ZZ /\ R e. NN ) /\ p || R ) -> p <_ R ) |
| 87 |
84 60 86
|
syl2anc |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p <_ R ) |
| 88 |
82 87
|
eqbrtrd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( 1 x. p ) <_ R ) |
| 89 |
|
1red |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> 1 e. RR ) |
| 90 |
70
|
nnred |
|- ( ph -> R e. RR ) |
| 91 |
90
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. RR ) |
| 92 |
91
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> R e. RR ) |
| 93 |
92
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R e. RR ) |
| 94 |
93
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R e. RR ) |
| 95 |
63
|
nnrpd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> p e. RR+ ) |
| 96 |
89 94 95
|
lemuldivd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( ( 1 x. p ) <_ R <-> 1 <_ ( R / p ) ) ) |
| 97 |
88 96
|
mpbid |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> 1 <_ ( R / p ) ) |
| 98 |
90
|
ad2antrr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> R e. RR ) |
| 99 |
58
|
ad2antrr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> B e. ZZ ) |
| 100 |
99
|
zred |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> B e. RR ) |
| 101 |
62
|
nnred |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> p e. RR ) |
| 102 |
100 101
|
remulcld |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> ( B x. p ) e. RR ) |
| 103 |
|
elfzle2 |
|- ( R e. ( 1 ... B ) -> R <_ B ) |
| 104 |
68 103
|
syl |
|- ( ph -> R <_ B ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R <_ B ) |
| 106 |
105
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> R <_ B ) |
| 107 |
58
|
zred |
|- ( ph -> B e. RR ) |
| 108 |
|
9re |
|- 9 e. RR |
| 109 |
108
|
a1i |
|- ( ph -> 9 e. RR ) |
| 110 |
|
9pos |
|- 0 < 9 |
| 111 |
110
|
a1i |
|- ( ph -> 0 < 9 ) |
| 112 |
32 107
|
eqeltrrd |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
| 113 |
39 46
|
3lexlogpow5ineq4 |
|- ( ph -> 9 < ( ( 2 logb N ) ^ 5 ) ) |
| 114 |
56
|
ceilged |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 115 |
109 56 112 113 114
|
ltletrd |
|- ( ph -> 9 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 116 |
115 32
|
breqtrrd |
|- ( ph -> 9 < B ) |
| 117 |
40 109 107 111 116
|
lttrd |
|- ( ph -> 0 < B ) |
| 118 |
40 107 117
|
ltled |
|- ( ph -> 0 <_ B ) |
| 119 |
118
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> 0 <_ B ) |
| 120 |
119
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> 0 <_ B ) |
| 121 |
62
|
nnge1d |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> 1 <_ p ) |
| 122 |
100 101 120 121
|
lemulge11d |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> B <_ ( B x. p ) ) |
| 123 |
98 100 102 106 122
|
letrd |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> R <_ ( B x. p ) ) |
| 124 |
62
|
nnrpd |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> p e. RR+ ) |
| 125 |
98 100 124
|
ledivmul2d |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> ( ( R / p ) <_ B <-> R <_ ( B x. p ) ) ) |
| 126 |
123 125
|
mpbird |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> ( R / p ) <_ B ) |
| 127 |
126
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / p ) <_ B ) |
| 128 |
127
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) <_ B ) |
| 129 |
31 59 80 97 128
|
elfzd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) e. ( 1 ... B ) ) |
| 130 |
93
|
recnd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R e. CC ) |
| 131 |
62
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p e. NN ) |
| 132 |
131
|
nnzd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p e. ZZ ) |
| 133 |
|
simplr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p e. Prime ) |
| 134 |
71
|
anasss |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R e. NN ) |
| 135 |
133 134
|
pccld |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p pCnt R ) e. NN0 ) |
| 136 |
132 135
|
zexpcld |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) e. ZZ ) |
| 137 |
136
|
zcnd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) e. CC ) |
| 138 |
131
|
nncnd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p e. CC ) |
| 139 |
65
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p =/= 0 ) |
| 140 |
135
|
nn0zd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p pCnt R ) e. ZZ ) |
| 141 |
138 139 140
|
expne0d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) =/= 0 ) |
| 142 |
130 137 141
|
divcan1d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) x. ( p ^ ( p pCnt R ) ) ) = R ) |
| 143 |
142
|
eqcomd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R = ( ( R / ( p ^ ( p pCnt R ) ) ) x. ( p ^ ( p pCnt R ) ) ) ) |
| 144 |
|
pcdvds |
|- ( ( p e. Prime /\ R e. NN ) -> ( p ^ ( p pCnt R ) ) || R ) |
| 145 |
133 134 144
|
syl2anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) || R ) |
| 146 |
134
|
nnzd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R e. ZZ ) |
| 147 |
|
dvdsval2 |
|- ( ( ( p ^ ( p pCnt R ) ) e. ZZ /\ ( p ^ ( p pCnt R ) ) =/= 0 /\ R e. ZZ ) -> ( ( p ^ ( p pCnt R ) ) || R <-> ( R / ( p ^ ( p pCnt R ) ) ) e. ZZ ) ) |
| 148 |
136 141 146 147
|
syl3anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( p ^ ( p pCnt R ) ) || R <-> ( R / ( p ^ ( p pCnt R ) ) ) e. ZZ ) ) |
| 149 |
145 148
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) e. ZZ ) |
| 150 |
38 47
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
| 151 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
| 152 |
151
|
a1i |
|- ( ph -> ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) ) |
| 153 |
150 152
|
mpbird |
|- ( ph -> N e. NN ) |
| 154 |
153
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 155 |
34 36 107 117 52
|
relogbcld |
|- ( ph -> ( 2 logb B ) e. RR ) |
| 156 |
155
|
flcld |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
| 157 |
34
|
recnd |
|- ( ph -> 2 e. CC ) |
| 158 |
40 36
|
gtned |
|- ( ph -> 2 =/= 0 ) |
| 159 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
| 160 |
157 158 52 159
|
syl3anc |
|- ( ph -> ( 2 logb 1 ) = 0 ) |
| 161 |
160
|
eqcomd |
|- ( ph -> 0 = ( 2 logb 1 ) ) |
| 162 |
|
2z |
|- 2 e. ZZ |
| 163 |
162
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 164 |
34
|
leidd |
|- ( ph -> 2 <_ 2 ) |
| 165 |
|
0lt1 |
|- 0 < 1 |
| 166 |
165
|
a1i |
|- ( ph -> 0 < 1 ) |
| 167 |
|
1lt9 |
|- 1 < 9 |
| 168 |
167
|
a1i |
|- ( ph -> 1 < 9 ) |
| 169 |
48 109 107 168 116
|
lttrd |
|- ( ph -> 1 < B ) |
| 170 |
48 107 169
|
ltled |
|- ( ph -> 1 <_ B ) |
| 171 |
163 164 48 166 107 117 170
|
logblebd |
|- ( ph -> ( 2 logb 1 ) <_ ( 2 logb B ) ) |
| 172 |
161 171
|
eqbrtrd |
|- ( ph -> 0 <_ ( 2 logb B ) ) |
| 173 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 174 |
|
flge |
|- ( ( ( 2 logb B ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( 2 logb B ) <-> 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 175 |
155 173 174
|
syl2anc |
|- ( ph -> ( 0 <_ ( 2 logb B ) <-> 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 176 |
172 175
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( 2 logb B ) ) ) |
| 177 |
156 176
|
jca |
|- ( ph -> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 178 |
|
elnn0z |
|- ( ( |_ ` ( 2 logb B ) ) e. NN0 <-> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 179 |
178
|
a1i |
|- ( ph -> ( ( |_ ` ( 2 logb B ) ) e. NN0 <-> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 180 |
177 179
|
mpbird |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
| 181 |
154 180
|
zexpcld |
|- ( ph -> ( N ^ ( |_ ` ( 2 logb B ) ) ) e. ZZ ) |
| 182 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) e. Fin ) |
| 183 |
154
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> N e. ZZ ) |
| 184 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) -> k e. NN ) |
| 185 |
184
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. NN ) |
| 186 |
185
|
nnnn0d |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. NN0 ) |
| 187 |
183 186
|
zexpcld |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( N ^ k ) e. ZZ ) |
| 188 |
|
1zzd |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 e. ZZ ) |
| 189 |
187 188
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( ( N ^ k ) - 1 ) e. ZZ ) |
| 190 |
182 189
|
fprodzcl |
|- ( ph -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) e. ZZ ) |
| 191 |
181 190
|
zmulcld |
|- ( ph -> ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) e. ZZ ) |
| 192 |
2
|
a1i |
|- ( ph -> A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) |
| 193 |
192
|
eleq1d |
|- ( ph -> ( A e. ZZ <-> ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) e. ZZ ) ) |
| 194 |
191 193
|
mpbird |
|- ( ph -> A e. ZZ ) |
| 195 |
194
|
ad3antrrr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> A e. ZZ ) |
| 196 |
|
simprl |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p || R ) |
| 197 |
134 133 196
|
aks4d1p8d3 |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) gcd ( p ^ ( p pCnt R ) ) ) = 1 ) |
| 198 |
138
|
exp0d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ 0 ) = 1 ) |
| 199 |
|
pcelnn |
|- ( ( p e. Prime /\ R e. NN ) -> ( ( p pCnt R ) e. NN <-> p || R ) ) |
| 200 |
133 134 199
|
syl2anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( p pCnt R ) e. NN <-> p || R ) ) |
| 201 |
196 200
|
mpbird |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p pCnt R ) e. NN ) |
| 202 |
201
|
nngt0d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 0 < ( p pCnt R ) ) |
| 203 |
101
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p e. RR ) |
| 204 |
173
|
ad3antrrr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 0 e. ZZ ) |
| 205 |
|
prmgt1 |
|- ( p e. Prime -> 1 < p ) |
| 206 |
205
|
adantl |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> 1 < p ) |
| 207 |
206
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 < p ) |
| 208 |
203 204 140 207
|
ltexp2d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( 0 < ( p pCnt R ) <-> ( p ^ 0 ) < ( p ^ ( p pCnt R ) ) ) ) |
| 209 |
202 208
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ 0 ) < ( p ^ ( p pCnt R ) ) ) |
| 210 |
198 209
|
eqbrtrrd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 < ( p ^ ( p pCnt R ) ) ) |
| 211 |
136
|
zred |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) e. RR ) |
| 212 |
70
|
nnrpd |
|- ( ph -> R e. RR+ ) |
| 213 |
212
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. RR+ ) |
| 214 |
213
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> R e. RR+ ) |
| 215 |
214
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R e. RR+ ) |
| 216 |
211 215
|
ltmulgt11d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( 1 < ( p ^ ( p pCnt R ) ) <-> R < ( R x. ( p ^ ( p pCnt R ) ) ) ) ) |
| 217 |
210 216
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R < ( R x. ( p ^ ( p pCnt R ) ) ) ) |
| 218 |
124
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> p e. RR+ ) |
| 219 |
218 140
|
rpexpcld |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) e. RR+ ) |
| 220 |
93 93 219
|
ltdivmul2d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) < R <-> R < ( R x. ( p ^ ( p pCnt R ) ) ) ) ) |
| 221 |
217 220
|
mpbird |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) < R ) |
| 222 |
93 211 141
|
redivcld |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) e. RR ) |
| 223 |
222 93
|
ltnled |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) < R <-> -. R <_ ( R / ( p ^ ( p pCnt R ) ) ) ) ) |
| 224 |
221 223
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. R <_ ( R / ( p ^ ( p pCnt R ) ) ) ) |
| 225 |
4
|
a1i |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) ) |
| 226 |
225
|
breq1d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R <_ ( R / ( p ^ ( p pCnt R ) ) ) <-> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) ) ) |
| 227 |
226
|
notbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( -. R <_ ( R / ( p ^ ( p pCnt R ) ) ) <-> -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) ) ) |
| 228 |
224 227
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) ) |
| 229 |
|
elfznn |
|- ( f e. ( 1 ... B ) -> f e. NN ) |
| 230 |
229
|
adantl |
|- ( ( ph /\ f e. ( 1 ... B ) ) -> f e. NN ) |
| 231 |
230
|
nnred |
|- ( ( ph /\ f e. ( 1 ... B ) ) -> f e. RR ) |
| 232 |
231
|
ex |
|- ( ph -> ( f e. ( 1 ... B ) -> f e. RR ) ) |
| 233 |
232
|
ssrdv |
|- ( ph -> ( 1 ... B ) C_ RR ) |
| 234 |
7 233
|
sstrd |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 235 |
234
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 236 |
235
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 237 |
236
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 238 |
19
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
| 239 |
238
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
| 240 |
239
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
| 241 |
|
infrefilb |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin /\ ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) ) |
| 242 |
241
|
3expa |
|- ( ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin ) /\ ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) ) |
| 243 |
242
|
ex |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) ) ) |
| 244 |
243
|
con3d |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin ) -> ( -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) -> -. ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 245 |
237 240 244
|
syl2anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( p ^ ( p pCnt R ) ) ) -> -. ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 246 |
228 245
|
mpd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) |
| 247 |
|
1zzd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 e. ZZ ) |
| 248 |
99
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> B e. ZZ ) |
| 249 |
137
|
mullidd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( 1 x. ( p ^ ( p pCnt R ) ) ) = ( p ^ ( p pCnt R ) ) ) |
| 250 |
|
dvdsle |
|- ( ( ( p ^ ( p pCnt R ) ) e. ZZ /\ R e. NN ) -> ( ( p ^ ( p pCnt R ) ) || R -> ( p ^ ( p pCnt R ) ) <_ R ) ) |
| 251 |
136 134 250
|
syl2anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( p ^ ( p pCnt R ) ) || R -> ( p ^ ( p pCnt R ) ) <_ R ) ) |
| 252 |
145 251
|
mpd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) <_ R ) |
| 253 |
249 252
|
eqbrtrd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( 1 x. ( p ^ ( p pCnt R ) ) ) <_ R ) |
| 254 |
48
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> 1 e. RR ) |
| 255 |
254
|
ad2antrr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 e. RR ) |
| 256 |
255 93 219
|
lemuldivd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( 1 x. ( p ^ ( p pCnt R ) ) ) <_ R <-> 1 <_ ( R / ( p ^ ( p pCnt R ) ) ) ) ) |
| 257 |
253 256
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 <_ ( R / ( p ^ ( p pCnt R ) ) ) ) |
| 258 |
100
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> B e. RR ) |
| 259 |
121
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 <_ p ) |
| 260 |
203 135 259
|
expge1d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 <_ ( p ^ ( p pCnt R ) ) ) |
| 261 |
|
nnledivrp |
|- ( ( R e. NN /\ ( p ^ ( p pCnt R ) ) e. RR+ ) -> ( 1 <_ ( p ^ ( p pCnt R ) ) <-> ( R / ( p ^ ( p pCnt R ) ) ) <_ R ) ) |
| 262 |
134 219 261
|
syl2anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( 1 <_ ( p ^ ( p pCnt R ) ) <-> ( R / ( p ^ ( p pCnt R ) ) ) <_ R ) ) |
| 263 |
260 262
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) <_ R ) |
| 264 |
106
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R <_ B ) |
| 265 |
222 93 258 263 264
|
letrd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) <_ B ) |
| 266 |
247 248 149 257 265
|
elfzd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) e. ( 1 ... B ) ) |
| 267 |
|
breq1 |
|- ( r = ( R / ( p ^ ( p pCnt R ) ) ) -> ( r || A <-> ( R / ( p ^ ( p pCnt R ) ) ) || A ) ) |
| 268 |
267
|
notbid |
|- ( r = ( R / ( p ^ ( p pCnt R ) ) ) -> ( -. r || A <-> -. ( R / ( p ^ ( p pCnt R ) ) ) || A ) ) |
| 269 |
268
|
elrab3 |
|- ( ( R / ( p ^ ( p pCnt R ) ) ) e. ( 1 ... B ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } <-> -. ( R / ( p ^ ( p pCnt R ) ) ) || A ) ) |
| 270 |
269
|
con2bid |
|- ( ( R / ( p ^ ( p pCnt R ) ) ) e. ( 1 ... B ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) || A <-> -. ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 271 |
266 270
|
syl |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) || A <-> -. ( R / ( p ^ ( p pCnt R ) ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 272 |
246 271
|
mpbird |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / ( p ^ ( p pCnt R ) ) ) || A ) |
| 273 |
134
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> R e. NN ) |
| 274 |
153
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> N e. NN ) |
| 275 |
274
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> N e. NN ) |
| 276 |
275
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) -> N e. NN ) |
| 277 |
276
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) -> N e. NN ) |
| 278 |
74 277
|
sylbir |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> N e. NN ) |
| 279 |
278
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> N e. NN ) |
| 280 |
133
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> p e. Prime ) |
| 281 |
|
simplr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> q e. Prime ) |
| 282 |
196
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> p || R ) |
| 283 |
|
simprr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> q || R ) |
| 284 |
|
simplrr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) -> -. p || N ) |
| 285 |
284
|
adantr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> -. p || N ) |
| 286 |
|
simprl |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> q || N ) |
| 287 |
273 279 280 281 282 283 285 286
|
aks4d1p8d2 |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ q e. Prime ) /\ ( q || N /\ q || R ) ) -> ( p ^ ( p pCnt R ) ) < R ) |
| 288 |
|
simpr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> 1 < ( N gcd R ) ) |
| 289 |
288
|
ad2antrr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 < ( N gcd R ) ) |
| 290 |
255 289
|
ltned |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> 1 =/= ( N gcd R ) ) |
| 291 |
290
|
necomd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( N gcd R ) =/= 1 ) |
| 292 |
278 134
|
prmdvdsncoprmbd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( E. q e. Prime ( q || N /\ q || R ) <-> ( N gcd R ) =/= 1 ) ) |
| 293 |
292
|
bicomd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( N gcd R ) =/= 1 <-> E. q e. Prime ( q || N /\ q || R ) ) ) |
| 294 |
293
|
biimpd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( N gcd R ) =/= 1 -> E. q e. Prime ( q || N /\ q || R ) ) ) |
| 295 |
291 294
|
mpd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> E. q e. Prime ( q || N /\ q || R ) ) |
| 296 |
287 295
|
r19.29a |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) < R ) |
| 297 |
211 93
|
ltnled |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( p ^ ( p pCnt R ) ) < R <-> -. R <_ ( p ^ ( p pCnt R ) ) ) ) |
| 298 |
296 297
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. R <_ ( p ^ ( p pCnt R ) ) ) |
| 299 |
225
|
breq1d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R <_ ( p ^ ( p pCnt R ) ) <-> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) ) ) |
| 300 |
299
|
notbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( -. R <_ ( p ^ ( p pCnt R ) ) <-> -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) ) ) |
| 301 |
298 300
|
mpbid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) ) |
| 302 |
|
infrefilb |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin /\ ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) ) |
| 303 |
302
|
3expa |
|- ( ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin ) /\ ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) ) |
| 304 |
303
|
ex |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin ) -> ( ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) ) ) |
| 305 |
304
|
con3d |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin ) -> ( -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) -> -. ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 306 |
237 240 305
|
syl2anc |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( -. inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( p ^ ( p pCnt R ) ) -> -. ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 307 |
301 306
|
mpd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) |
| 308 |
211 93 258 252 264
|
letrd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) <_ B ) |
| 309 |
247 248 136 260 308
|
elfzd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) e. ( 1 ... B ) ) |
| 310 |
|
breq1 |
|- ( r = ( p ^ ( p pCnt R ) ) -> ( r || A <-> ( p ^ ( p pCnt R ) ) || A ) ) |
| 311 |
310
|
notbid |
|- ( r = ( p ^ ( p pCnt R ) ) -> ( -. r || A <-> -. ( p ^ ( p pCnt R ) ) || A ) ) |
| 312 |
311
|
elrab3 |
|- ( ( p ^ ( p pCnt R ) ) e. ( 1 ... B ) -> ( ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } <-> -. ( p ^ ( p pCnt R ) ) || A ) ) |
| 313 |
309 312
|
syl |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } <-> -. ( p ^ ( p pCnt R ) ) || A ) ) |
| 314 |
313
|
con2bid |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( p ^ ( p pCnt R ) ) || A <-> -. ( p ^ ( p pCnt R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) ) |
| 315 |
307 314
|
mpbird |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( p ^ ( p pCnt R ) ) || A ) |
| 316 |
149 136 195 197 272 315
|
coprmdvds2d |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( ( R / ( p ^ ( p pCnt R ) ) ) x. ( p ^ ( p pCnt R ) ) ) || A ) |
| 317 |
143 316
|
eqbrtrd |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> R || A ) |
| 318 |
317
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R || A ) |
| 319 |
67
|
simprd |
|- ( ph -> -. R || A ) |
| 320 |
319
|
ad5antr |
|- ( ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ p || R ) /\ -. p || N ) /\ ( R / ( N gcd R ) ) || A ) -> -. R || A ) |
| 321 |
75 320
|
sylbir |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> -. R || A ) |
| 322 |
318 321
|
pm2.21dd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> -. ( R / p ) || A ) |
| 323 |
30 129 322
|
elrabd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) e. { r e. ( 1 ... B ) | -. r || A } ) |
| 324 |
|
lbinfle |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y /\ ( R / p ) e. { r e. ( 1 ... B ) | -. r || A } ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / p ) ) |
| 325 |
17 28 323 324
|
syl3anc |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / p ) ) |
| 326 |
5 325
|
eqbrtrd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R <_ ( R / p ) ) |
| 327 |
207
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> 1 < p ) |
| 328 |
|
1rp |
|- 1 e. RR+ |
| 329 |
328
|
a1i |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> 1 e. RR+ ) |
| 330 |
215
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R e. RR+ ) |
| 331 |
329 95 330
|
ltdiv2d |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( 1 < p <-> ( R / p ) < ( R / 1 ) ) ) |
| 332 |
327 331
|
mpbid |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) < ( R / 1 ) ) |
| 333 |
130
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> R e. CC ) |
| 334 |
333
|
div1d |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / 1 ) = R ) |
| 335 |
332 334
|
breqtrd |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) < R ) |
| 336 |
98 101 65
|
redivcld |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) -> ( R / p ) e. RR ) |
| 337 |
336
|
adantr |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> ( R / p ) e. RR ) |
| 338 |
337
|
adantr |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( R / p ) e. RR ) |
| 339 |
338 94
|
ltnled |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> ( ( R / p ) < R <-> -. R <_ ( R / p ) ) ) |
| 340 |
335 339
|
mpbid |
|- ( ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) /\ ( R / ( N gcd R ) ) || A ) -> -. R <_ ( R / p ) ) |
| 341 |
326 340
|
pm2.65da |
|- ( ( ( ( ph /\ 1 < ( N gcd R ) ) /\ p e. Prime ) /\ ( p || R /\ -. p || N ) ) -> -. ( R / ( N gcd R ) ) || A ) |
| 342 |
1 2 3 4
|
aks4d1p7 |
|- ( ph -> E. p e. Prime ( p || R /\ -. p || N ) ) |
| 343 |
342
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> E. p e. Prime ( p || R /\ -. p || N ) ) |
| 344 |
341 343
|
r19.29a |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> -. ( R / ( N gcd R ) ) || A ) |
| 345 |
344
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ ( R / ( N gcd R ) ) || A ) -> -. ( R / ( N gcd R ) ) || A ) |
| 346 |
1 2 3 4 345
|
aks4d1p5 |
|- ( ph -> ( N gcd R ) = 1 ) |