Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p7.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
2 |
|
aks4d1p7.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
3 |
|
aks4d1p7.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
4 |
|
aks4d1p7.4 |
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) |
5 |
1
|
adantr |
|- ( ( ph /\ A. p e. Prime ( p || R -> p || N ) ) -> N e. ( ZZ>= ` 3 ) ) |
6 |
|
breq1 |
|- ( p = q -> ( p || R <-> q || R ) ) |
7 |
|
breq1 |
|- ( p = q -> ( p || N <-> q || N ) ) |
8 |
6 7
|
imbi12d |
|- ( p = q -> ( ( p || R -> p || N ) <-> ( q || R -> q || N ) ) ) |
9 |
8
|
cbvralvw |
|- ( A. p e. Prime ( p || R -> p || N ) <-> A. q e. Prime ( q || R -> q || N ) ) |
10 |
9
|
biimpi |
|- ( A. p e. Prime ( p || R -> p || N ) -> A. q e. Prime ( q || R -> q || N ) ) |
11 |
10
|
adantl |
|- ( ( ph /\ A. p e. Prime ( p || R -> p || N ) ) -> A. q e. Prime ( q || R -> q || N ) ) |
12 |
5 2 3 4 11
|
aks4d1p7d1 |
|- ( ( ph /\ A. p e. Prime ( p || R -> p || N ) ) -> R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) |
13 |
4
|
a1i |
|- ( ph -> R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) ) |
14 |
|
ltso |
|- < Or RR |
15 |
14
|
a1i |
|- ( ph -> < Or RR ) |
16 |
|
fzfid |
|- ( ph -> ( 1 ... B ) e. Fin ) |
17 |
|
ssrab2 |
|- { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) |
18 |
17
|
a1i |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) ) |
19 |
16 18
|
ssfid |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
20 |
1 2 3
|
aks4d1p3 |
|- ( ph -> E. r e. ( 1 ... B ) -. r || A ) |
21 |
|
rabn0 |
|- ( { r e. ( 1 ... B ) | -. r || A } =/= (/) <-> E. r e. ( 1 ... B ) -. r || A ) |
22 |
20 21
|
sylibr |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } =/= (/) ) |
23 |
|
elfznn |
|- ( o e. ( 1 ... B ) -> o e. NN ) |
24 |
23
|
adantl |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. NN ) |
25 |
24
|
nnred |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. RR ) |
26 |
25
|
ex |
|- ( ph -> ( o e. ( 1 ... B ) -> o e. RR ) ) |
27 |
26
|
ssrdv |
|- ( ph -> ( 1 ... B ) C_ RR ) |
28 |
18 27
|
sstrd |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
29 |
19 22 28
|
3jca |
|- ( ph -> ( { r e. ( 1 ... B ) | -. r || A } e. Fin /\ { r e. ( 1 ... B ) | -. r || A } =/= (/) /\ { r e. ( 1 ... B ) | -. r || A } C_ RR ) ) |
30 |
|
fiinfcl |
|- ( ( < Or RR /\ ( { r e. ( 1 ... B ) | -. r || A } e. Fin /\ { r e. ( 1 ... B ) | -. r || A } =/= (/) /\ { r e. ( 1 ... B ) | -. r || A } C_ RR ) ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) e. { r e. ( 1 ... B ) | -. r || A } ) |
31 |
15 29 30
|
syl2anc |
|- ( ph -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) e. { r e. ( 1 ... B ) | -. r || A } ) |
32 |
13 31
|
eqeltrd |
|- ( ph -> R e. { r e. ( 1 ... B ) | -. r || A } ) |
33 |
|
breq1 |
|- ( r = R -> ( r || A <-> R || A ) ) |
34 |
33
|
notbid |
|- ( r = R -> ( -. r || A <-> -. R || A ) ) |
35 |
34
|
elrab |
|- ( R e. { r e. ( 1 ... B ) | -. r || A } <-> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
36 |
32 35
|
sylib |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
37 |
36
|
simprd |
|- ( ph -> -. R || A ) |
38 |
1 2 3 4
|
aks4d1p4 |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
39 |
38
|
simpld |
|- ( ph -> R e. ( 1 ... B ) ) |
40 |
39
|
elfzelzd |
|- ( ph -> R e. ZZ ) |
41 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
42 |
1 41
|
syl |
|- ( ph -> N e. ZZ ) |
43 |
|
2re |
|- 2 e. RR |
44 |
43
|
a1i |
|- ( ph -> 2 e. RR ) |
45 |
|
2pos |
|- 0 < 2 |
46 |
45
|
a1i |
|- ( ph -> 0 < 2 ) |
47 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
48 |
42
|
zred |
|- ( ph -> N e. RR ) |
49 |
|
0red |
|- ( ph -> 0 e. RR ) |
50 |
|
3re |
|- 3 e. RR |
51 |
50
|
a1i |
|- ( ph -> 3 e. RR ) |
52 |
|
3pos |
|- 0 < 3 |
53 |
52
|
a1i |
|- ( ph -> 0 < 3 ) |
54 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
55 |
1 54
|
syl |
|- ( ph -> 3 <_ N ) |
56 |
49 51 48 53 55
|
ltletrd |
|- ( ph -> 0 < N ) |
57 |
|
1red |
|- ( ph -> 1 e. RR ) |
58 |
|
1lt2 |
|- 1 < 2 |
59 |
58
|
a1i |
|- ( ph -> 1 < 2 ) |
60 |
57 59
|
ltned |
|- ( ph -> 1 =/= 2 ) |
61 |
60
|
necomd |
|- ( ph -> 2 =/= 1 ) |
62 |
44 46 48 56 61
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
63 |
|
5nn0 |
|- 5 e. NN0 |
64 |
63
|
a1i |
|- ( ph -> 5 e. NN0 ) |
65 |
62 64
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
66 |
65
|
ceilcld |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
67 |
66
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
68 |
47 67
|
eqeltrd |
|- ( ph -> B e. RR ) |
69 |
|
9re |
|- 9 e. RR |
70 |
69
|
a1i |
|- ( ph -> 9 e. RR ) |
71 |
|
9pos |
|- 0 < 9 |
72 |
71
|
a1i |
|- ( ph -> 0 < 9 ) |
73 |
48 55
|
3lexlogpow5ineq4 |
|- ( ph -> 9 < ( ( 2 logb N ) ^ 5 ) ) |
74 |
65
|
ceilged |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
75 |
70 65 67 73 74
|
ltletrd |
|- ( ph -> 9 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
76 |
75 47
|
breqtrrd |
|- ( ph -> 9 < B ) |
77 |
49 70 68 72 76
|
lttrd |
|- ( ph -> 0 < B ) |
78 |
44 46 68 77 61
|
relogbcld |
|- ( ph -> ( 2 logb B ) e. RR ) |
79 |
78
|
flcld |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
80 |
44
|
recnd |
|- ( ph -> 2 e. CC ) |
81 |
49 46
|
gtned |
|- ( ph -> 2 =/= 0 ) |
82 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
83 |
80 81 61 82
|
syl3anc |
|- ( ph -> ( 2 logb 1 ) = 0 ) |
84 |
83
|
eqcomd |
|- ( ph -> 0 = ( 2 logb 1 ) ) |
85 |
|
2z |
|- 2 e. ZZ |
86 |
85
|
a1i |
|- ( ph -> 2 e. ZZ ) |
87 |
44
|
leidd |
|- ( ph -> 2 <_ 2 ) |
88 |
|
0lt1 |
|- 0 < 1 |
89 |
88
|
a1i |
|- ( ph -> 0 < 1 ) |
90 |
|
1lt9 |
|- 1 < 9 |
91 |
90
|
a1i |
|- ( ph -> 1 < 9 ) |
92 |
57 70 91
|
ltled |
|- ( ph -> 1 <_ 9 ) |
93 |
70 68 76
|
ltled |
|- ( ph -> 9 <_ B ) |
94 |
57 70 68 92 93
|
letrd |
|- ( ph -> 1 <_ B ) |
95 |
86 87 57 89 68 77 94
|
logblebd |
|- ( ph -> ( 2 logb 1 ) <_ ( 2 logb B ) ) |
96 |
84 95
|
eqbrtrd |
|- ( ph -> 0 <_ ( 2 logb B ) ) |
97 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
98 |
|
flge |
|- ( ( ( 2 logb B ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( 2 logb B ) <-> 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
99 |
78 97 98
|
syl2anc |
|- ( ph -> ( 0 <_ ( 2 logb B ) <-> 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
100 |
96 99
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( 2 logb B ) ) ) |
101 |
79 100
|
jca |
|- ( ph -> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
102 |
|
elnn0z |
|- ( ( |_ ` ( 2 logb B ) ) e. NN0 <-> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
103 |
101 102
|
sylibr |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
104 |
42 103
|
zexpcld |
|- ( ph -> ( N ^ ( |_ ` ( 2 logb B ) ) ) e. ZZ ) |
105 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) e. Fin ) |
106 |
42
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> N e. ZZ ) |
107 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) -> k e. NN ) |
108 |
107
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. NN ) |
109 |
108
|
nnnn0d |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. NN0 ) |
110 |
106 109
|
zexpcld |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( N ^ k ) e. ZZ ) |
111 |
|
1zzd |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 e. ZZ ) |
112 |
110 111
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( ( N ^ k ) - 1 ) e. ZZ ) |
113 |
105 112
|
fprodzcl |
|- ( ph -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) e. ZZ ) |
114 |
|
dvdsmultr1 |
|- ( ( R e. ZZ /\ ( N ^ ( |_ ` ( 2 logb B ) ) ) e. ZZ /\ prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) e. ZZ ) -> ( R || ( N ^ ( |_ ` ( 2 logb B ) ) ) -> R || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) ) |
115 |
40 104 113 114
|
syl3anc |
|- ( ph -> ( R || ( N ^ ( |_ ` ( 2 logb B ) ) ) -> R || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) ) |
116 |
115
|
imp |
|- ( ( ph /\ R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) -> R || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) |
117 |
2
|
a1i |
|- ( ph -> A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) |
118 |
117
|
breq2d |
|- ( ph -> ( R || A <-> R || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) ) |
119 |
118
|
adantr |
|- ( ( ph /\ R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) -> ( R || A <-> R || ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) ) |
120 |
116 119
|
mpbird |
|- ( ( ph /\ R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) -> R || A ) |
121 |
120
|
ex |
|- ( ph -> ( R || ( N ^ ( |_ ` ( 2 logb B ) ) ) -> R || A ) ) |
122 |
121
|
con3d |
|- ( ph -> ( -. R || A -> -. R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
123 |
37 122
|
mpd |
|- ( ph -> -. R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) |
124 |
123
|
adantr |
|- ( ( ph /\ A. p e. Prime ( p || R -> p || N ) ) -> -. R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) |
125 |
12 124
|
pm2.65da |
|- ( ph -> -. A. p e. Prime ( p || R -> p || N ) ) |
126 |
|
ianor |
|- ( -. ( p || R /\ -. p || N ) <-> ( -. p || R \/ -. -. p || N ) ) |
127 |
|
notnotb |
|- ( p || N <-> -. -. p || N ) |
128 |
127
|
orbi2i |
|- ( ( -. p || R \/ p || N ) <-> ( -. p || R \/ -. -. p || N ) ) |
129 |
128
|
bicomi |
|- ( ( -. p || R \/ -. -. p || N ) <-> ( -. p || R \/ p || N ) ) |
130 |
126 129
|
bitri |
|- ( -. ( p || R /\ -. p || N ) <-> ( -. p || R \/ p || N ) ) |
131 |
|
df-or |
|- ( ( -. p || R \/ p || N ) <-> ( -. -. p || R -> p || N ) ) |
132 |
130 131
|
bitri |
|- ( -. ( p || R /\ -. p || N ) <-> ( -. -. p || R -> p || N ) ) |
133 |
|
notnotb |
|- ( p || R <-> -. -. p || R ) |
134 |
133
|
imbi1i |
|- ( ( p || R -> p || N ) <-> ( -. -. p || R -> p || N ) ) |
135 |
134
|
bicomi |
|- ( ( -. -. p || R -> p || N ) <-> ( p || R -> p || N ) ) |
136 |
132 135
|
bitri |
|- ( -. ( p || R /\ -. p || N ) <-> ( p || R -> p || N ) ) |
137 |
136
|
ralbii |
|- ( A. p e. Prime -. ( p || R /\ -. p || N ) <-> A. p e. Prime ( p || R -> p || N ) ) |
138 |
137
|
notbii |
|- ( -. A. p e. Prime -. ( p || R /\ -. p || N ) <-> -. A. p e. Prime ( p || R -> p || N ) ) |
139 |
125 138
|
sylibr |
|- ( ph -> -. A. p e. Prime -. ( p || R /\ -. p || N ) ) |
140 |
|
ralnex |
|- ( A. p e. Prime -. ( p || R /\ -. p || N ) <-> -. E. p e. Prime ( p || R /\ -. p || N ) ) |
141 |
140
|
con2bii |
|- ( E. p e. Prime ( p || R /\ -. p || N ) <-> -. A. p e. Prime -. ( p || R /\ -. p || N ) ) |
142 |
141
|
bicomi |
|- ( -. A. p e. Prime -. ( p || R /\ -. p || N ) <-> E. p e. Prime ( p || R /\ -. p || N ) ) |
143 |
139 142
|
sylib |
|- ( ph -> E. p e. Prime ( p || R /\ -. p || N ) ) |