| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p7d1.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1p7d1.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 3 |
|
aks4d1p7d1.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 4 |
|
aks4d1p7d1.4 |
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) |
| 5 |
|
aks4d1p7d1.5 |
|- ( ph -> A. p e. Prime ( p || R -> p || N ) ) |
| 6 |
|
simp2 |
|- ( ( ph /\ p e. Prime /\ p || R ) -> p e. Prime ) |
| 7 |
1 2 3 4
|
aks4d1p4 |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
| 8 |
7
|
simpld |
|- ( ph -> R e. ( 1 ... B ) ) |
| 9 |
|
elfznn |
|- ( R e. ( 1 ... B ) -> R e. NN ) |
| 10 |
8 9
|
syl |
|- ( ph -> R e. NN ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ p || R ) -> R e. NN ) |
| 12 |
6 11
|
pccld |
|- ( ( ph /\ p e. Prime /\ p || R ) -> ( p pCnt R ) e. NN0 ) |
| 13 |
12
|
3expa |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt R ) e. NN0 ) |
| 14 |
13
|
nn0red |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt R ) e. RR ) |
| 15 |
|
2re |
|- 2 e. RR |
| 16 |
15
|
a1i |
|- ( ph -> 2 e. RR ) |
| 17 |
|
2pos |
|- 0 < 2 |
| 18 |
17
|
a1i |
|- ( ph -> 0 < 2 ) |
| 19 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 20 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 21 |
1 20
|
syl |
|- ( ph -> N e. ZZ ) |
| 22 |
21
|
zred |
|- ( ph -> N e. RR ) |
| 23 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 24 |
|
3re |
|- 3 e. RR |
| 25 |
24
|
a1i |
|- ( ph -> 3 e. RR ) |
| 26 |
|
3pos |
|- 0 < 3 |
| 27 |
26
|
a1i |
|- ( ph -> 0 < 3 ) |
| 28 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 29 |
1 28
|
syl |
|- ( ph -> 3 <_ N ) |
| 30 |
23 25 22 27 29
|
ltletrd |
|- ( ph -> 0 < N ) |
| 31 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 32 |
|
1lt2 |
|- 1 < 2 |
| 33 |
32
|
a1i |
|- ( ph -> 1 < 2 ) |
| 34 |
31 33
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 35 |
34
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 36 |
16 18 22 30 35
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 37 |
|
5nn0 |
|- 5 e. NN0 |
| 38 |
37
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 39 |
36 38
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
| 40 |
|
ceilcl |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 42 |
41
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
| 43 |
19 42
|
eqeltrd |
|- ( ph -> B e. RR ) |
| 44 |
|
9re |
|- 9 e. RR |
| 45 |
44
|
a1i |
|- ( ph -> 9 e. RR ) |
| 46 |
|
9pos |
|- 0 < 9 |
| 47 |
46
|
a1i |
|- ( ph -> 0 < 9 ) |
| 48 |
22 29
|
3lexlogpow5ineq4 |
|- ( ph -> 9 < ( ( 2 logb N ) ^ 5 ) ) |
| 49 |
23 45 39 47 48
|
lttrd |
|- ( ph -> 0 < ( ( 2 logb N ) ^ 5 ) ) |
| 50 |
|
ceilge |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 51 |
39 50
|
syl |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 52 |
23 39 42 49 51
|
ltletrd |
|- ( ph -> 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 53 |
52 19
|
breqtrrd |
|- ( ph -> 0 < B ) |
| 54 |
16 18 43 53 35
|
relogbcld |
|- ( ph -> ( 2 logb B ) e. RR ) |
| 55 |
54
|
flcld |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
| 56 |
55
|
zred |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. RR ) |
| 57 |
56
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( |_ ` ( 2 logb B ) ) e. RR ) |
| 58 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> p e. Prime ) |
| 59 |
21 30
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
| 60 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
| 61 |
59 60
|
sylibr |
|- ( ph -> N e. NN ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> N e. NN ) |
| 63 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 64 |
63
|
addlidd |
|- ( ph -> ( 0 + 1 ) = 1 ) |
| 65 |
16
|
recnd |
|- ( ph -> 2 e. CC ) |
| 66 |
23 18
|
gtned |
|- ( ph -> 2 =/= 0 ) |
| 67 |
|
logbid1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 2 ) = 1 ) |
| 68 |
65 66 35 67
|
syl3anc |
|- ( ph -> ( 2 logb 2 ) = 1 ) |
| 69 |
68
|
eqcomd |
|- ( ph -> 1 = ( 2 logb 2 ) ) |
| 70 |
64 69
|
eqtrd |
|- ( ph -> ( 0 + 1 ) = ( 2 logb 2 ) ) |
| 71 |
|
2z |
|- 2 e. ZZ |
| 72 |
71
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 73 |
16
|
leidd |
|- ( ph -> 2 <_ 2 ) |
| 74 |
|
2lt9 |
|- 2 < 9 |
| 75 |
74
|
a1i |
|- ( ph -> 2 < 9 ) |
| 76 |
16 45 75
|
ltled |
|- ( ph -> 2 <_ 9 ) |
| 77 |
45 39 42 48 51
|
ltletrd |
|- ( ph -> 9 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 78 |
77 19
|
breqtrrd |
|- ( ph -> 9 < B ) |
| 79 |
45 43 78
|
ltled |
|- ( ph -> 9 <_ B ) |
| 80 |
16 45 43 76 79
|
letrd |
|- ( ph -> 2 <_ B ) |
| 81 |
72 73 16 18 43 53 80
|
logblebd |
|- ( ph -> ( 2 logb 2 ) <_ ( 2 logb B ) ) |
| 82 |
70 81
|
eqbrtrd |
|- ( ph -> ( 0 + 1 ) <_ ( 2 logb B ) ) |
| 83 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 84 |
83
|
peano2zd |
|- ( ph -> ( 0 + 1 ) e. ZZ ) |
| 85 |
|
flge |
|- ( ( ( 2 logb B ) e. RR /\ ( 0 + 1 ) e. ZZ ) -> ( ( 0 + 1 ) <_ ( 2 logb B ) <-> ( 0 + 1 ) <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 86 |
54 84 85
|
syl2anc |
|- ( ph -> ( ( 0 + 1 ) <_ ( 2 logb B ) <-> ( 0 + 1 ) <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 87 |
82 86
|
mpbid |
|- ( ph -> ( 0 + 1 ) <_ ( |_ ` ( 2 logb B ) ) ) |
| 88 |
83 55
|
zltp1led |
|- ( ph -> ( 0 < ( |_ ` ( 2 logb B ) ) <-> ( 0 + 1 ) <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 89 |
87 88
|
mpbird |
|- ( ph -> 0 < ( |_ ` ( 2 logb B ) ) ) |
| 90 |
55 89
|
jca |
|- ( ph -> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 < ( |_ ` ( 2 logb B ) ) ) ) |
| 91 |
|
elnnz |
|- ( ( |_ ` ( 2 logb B ) ) e. NN <-> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 < ( |_ ` ( 2 logb B ) ) ) ) |
| 92 |
90 91
|
sylibr |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. NN ) |
| 93 |
92
|
nnnn0d |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
| 94 |
93
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
| 95 |
62 94
|
nnexpcld |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( N ^ ( |_ ` ( 2 logb B ) ) ) e. NN ) |
| 96 |
58 95
|
pccld |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) e. NN0 ) |
| 97 |
96
|
nn0red |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) e. RR ) |
| 98 |
1
|
3ad2ant1 |
|- ( ( ph /\ p e. Prime /\ p || R ) -> N e. ( ZZ>= ` 3 ) ) |
| 99 |
|
simp3 |
|- ( ( ph /\ p e. Prime /\ p || R ) -> p || R ) |
| 100 |
|
eqid |
|- ( p pCnt R ) = ( p pCnt R ) |
| 101 |
98 2 3 4 6 99 100
|
aks4d1p6 |
|- ( ( ph /\ p e. Prime /\ p || R ) -> ( p pCnt R ) <_ ( |_ ` ( 2 logb B ) ) ) |
| 102 |
101
|
3expa |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt R ) <_ ( |_ ` ( 2 logb B ) ) ) |
| 103 |
58 62
|
pccld |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt N ) e. NN0 ) |
| 104 |
103
|
nn0red |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt N ) e. RR ) |
| 105 |
23 56 89
|
ltled |
|- ( ph -> 0 <_ ( |_ ` ( 2 logb B ) ) ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ p e. Prime ) -> 0 <_ ( |_ ` ( 2 logb B ) ) ) |
| 107 |
106
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> 0 <_ ( |_ ` ( 2 logb B ) ) ) |
| 108 |
|
rsp |
|- ( A. p e. Prime ( p || R -> p || N ) -> ( p e. Prime -> ( p || R -> p || N ) ) ) |
| 109 |
5 108
|
syl |
|- ( ph -> ( p e. Prime -> ( p || R -> p || N ) ) ) |
| 110 |
109
|
imp |
|- ( ( ph /\ p e. Prime ) -> ( p || R -> p || N ) ) |
| 111 |
110
|
imp |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> p || N ) |
| 112 |
61
|
adantr |
|- ( ( ph /\ p e. Prime ) -> N e. NN ) |
| 113 |
112
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> N e. NN ) |
| 114 |
|
pcelnn |
|- ( ( p e. Prime /\ N e. NN ) -> ( ( p pCnt N ) e. NN <-> p || N ) ) |
| 115 |
58 113 114
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( ( p pCnt N ) e. NN <-> p || N ) ) |
| 116 |
111 115
|
mpbird |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt N ) e. NN ) |
| 117 |
|
nnge1 |
|- ( ( p pCnt N ) e. NN -> 1 <_ ( p pCnt N ) ) |
| 118 |
116 117
|
syl |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> 1 <_ ( p pCnt N ) ) |
| 119 |
57 104 107 118
|
lemulge11d |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( |_ ` ( 2 logb B ) ) <_ ( ( |_ ` ( 2 logb B ) ) x. ( p pCnt N ) ) ) |
| 120 |
|
zq |
|- ( N e. ZZ -> N e. QQ ) |
| 121 |
21 120
|
syl |
|- ( ph -> N e. QQ ) |
| 122 |
61
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 123 |
121 122
|
jca |
|- ( ph -> ( N e. QQ /\ N =/= 0 ) ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( N e. QQ /\ N =/= 0 ) ) |
| 125 |
124
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( N e. QQ /\ N =/= 0 ) ) |
| 126 |
55
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
| 127 |
126
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
| 128 |
|
pcexp |
|- ( ( p e. Prime /\ ( N e. QQ /\ N =/= 0 ) /\ ( |_ ` ( 2 logb B ) ) e. ZZ ) -> ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) = ( ( |_ ` ( 2 logb B ) ) x. ( p pCnt N ) ) ) |
| 129 |
58 125 127 128
|
syl3anc |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) = ( ( |_ ` ( 2 logb B ) ) x. ( p pCnt N ) ) ) |
| 130 |
119 129
|
breqtrrd |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( |_ ` ( 2 logb B ) ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 131 |
14 57 97 102 130
|
letrd |
|- ( ( ( ph /\ p e. Prime ) /\ p || R ) -> ( p pCnt R ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 132 |
|
simpr |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> -. p || R ) |
| 133 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> p e. Prime ) |
| 134 |
10
|
adantr |
|- ( ( ph /\ p e. Prime ) -> R e. NN ) |
| 135 |
134
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> R e. NN ) |
| 136 |
|
pceq0 |
|- ( ( p e. Prime /\ R e. NN ) -> ( ( p pCnt R ) = 0 <-> -. p || R ) ) |
| 137 |
133 135 136
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> ( ( p pCnt R ) = 0 <-> -. p || R ) ) |
| 138 |
132 137
|
mpbird |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> ( p pCnt R ) = 0 ) |
| 139 |
112
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> N e. NN ) |
| 140 |
93
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
| 141 |
140
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
| 142 |
139 141
|
nnexpcld |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> ( N ^ ( |_ ` ( 2 logb B ) ) ) e. NN ) |
| 143 |
133 142
|
pccld |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) e. NN0 ) |
| 144 |
143
|
nn0ge0d |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> 0 <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 145 |
138 144
|
eqbrtrd |
|- ( ( ( ph /\ p e. Prime ) /\ -. p || R ) -> ( p pCnt R ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 146 |
131 145
|
pm2.61dan |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt R ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 147 |
146
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p pCnt R ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) |
| 148 |
8
|
elfzelzd |
|- ( ph -> R e. ZZ ) |
| 149 |
21 93
|
zexpcld |
|- ( ph -> ( N ^ ( |_ ` ( 2 logb B ) ) ) e. ZZ ) |
| 150 |
|
pc2dvds |
|- ( ( R e. ZZ /\ ( N ^ ( |_ ` ( 2 logb B ) ) ) e. ZZ ) -> ( R || ( N ^ ( |_ ` ( 2 logb B ) ) ) <-> A. p e. Prime ( p pCnt R ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) ) |
| 151 |
148 149 150
|
syl2anc |
|- ( ph -> ( R || ( N ^ ( |_ ` ( 2 logb B ) ) ) <-> A. p e. Prime ( p pCnt R ) <_ ( p pCnt ( N ^ ( |_ ` ( 2 logb B ) ) ) ) ) ) |
| 152 |
147 151
|
mpbird |
|- ( ph -> R || ( N ^ ( |_ ` ( 2 logb B ) ) ) ) |