Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p4.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
2 |
|
aks4d1p4.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
3 |
|
aks4d1p4.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
4 |
|
aks4d1p4.4 |
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) |
5 |
4
|
a1i |
|- ( ph -> R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) ) |
6 |
|
ltso |
|- < Or RR |
7 |
6
|
a1i |
|- ( ph -> < Or RR ) |
8 |
|
fzfid |
|- ( ph -> ( 1 ... B ) e. Fin ) |
9 |
|
ssrab2 |
|- { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) |
10 |
9
|
a1i |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) ) |
11 |
8 10
|
ssfid |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
12 |
1 2 3
|
aks4d1p3 |
|- ( ph -> E. r e. ( 1 ... B ) -. r || A ) |
13 |
|
rabn0 |
|- ( { r e. ( 1 ... B ) | -. r || A } =/= (/) <-> E. r e. ( 1 ... B ) -. r || A ) |
14 |
12 13
|
sylibr |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } =/= (/) ) |
15 |
|
elfznn |
|- ( o e. ( 1 ... B ) -> o e. NN ) |
16 |
15
|
adantl |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. NN ) |
17 |
16
|
nnred |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. RR ) |
18 |
17
|
ex |
|- ( ph -> ( o e. ( 1 ... B ) -> o e. RR ) ) |
19 |
18
|
ssrdv |
|- ( ph -> ( 1 ... B ) C_ RR ) |
20 |
10 19
|
sstrd |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
21 |
11 14 20
|
3jca |
|- ( ph -> ( { r e. ( 1 ... B ) | -. r || A } e. Fin /\ { r e. ( 1 ... B ) | -. r || A } =/= (/) /\ { r e. ( 1 ... B ) | -. r || A } C_ RR ) ) |
22 |
|
fiinfcl |
|- ( ( < Or RR /\ ( { r e. ( 1 ... B ) | -. r || A } e. Fin /\ { r e. ( 1 ... B ) | -. r || A } =/= (/) /\ { r e. ( 1 ... B ) | -. r || A } C_ RR ) ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) e. { r e. ( 1 ... B ) | -. r || A } ) |
23 |
7 21 22
|
syl2anc |
|- ( ph -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) e. { r e. ( 1 ... B ) | -. r || A } ) |
24 |
5 23
|
eqeltrd |
|- ( ph -> R e. { r e. ( 1 ... B ) | -. r || A } ) |
25 |
|
breq1 |
|- ( r = R -> ( r || A <-> R || A ) ) |
26 |
25
|
notbid |
|- ( r = R -> ( -. r || A <-> -. R || A ) ) |
27 |
26
|
elrab |
|- ( R e. { r e. ( 1 ... B ) | -. r || A } <-> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
28 |
24 27
|
sylib |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |