Metamath Proof Explorer


Theorem aks4d1p4

Description: There exists a small enough number such that it does not divide A . (Contributed by metakunt, 28-Oct-2024)

Ref Expression
Hypotheses aks4d1p4.1 φN3
aks4d1p4.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p4.3 B=log2N5
aks4d1p4.4 R=supr1B|¬rA<
Assertion aks4d1p4 φR1B¬RA

Proof

Step Hyp Ref Expression
1 aks4d1p4.1 φN3
2 aks4d1p4.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p4.3 B=log2N5
4 aks4d1p4.4 R=supr1B|¬rA<
5 4 a1i φR=supr1B|¬rA<
6 ltso <Or
7 6 a1i φ<Or
8 fzfid φ1BFin
9 ssrab2 r1B|¬rA1B
10 9 a1i φr1B|¬rA1B
11 8 10 ssfid φr1B|¬rAFin
12 1 2 3 aks4d1p3 φr1B¬rA
13 rabn0 r1B|¬rAr1B¬rA
14 12 13 sylibr φr1B|¬rA
15 elfznn o1Bo
16 15 adantl φo1Bo
17 16 nnred φo1Bo
18 17 ex φo1Bo
19 18 ssrdv φ1B
20 10 19 sstrd φr1B|¬rA
21 11 14 20 3jca φr1B|¬rAFinr1B|¬rAr1B|¬rA
22 fiinfcl <Orr1B|¬rAFinr1B|¬rAr1B|¬rAsupr1B|¬rA<r1B|¬rA
23 7 21 22 syl2anc φsupr1B|¬rA<r1B|¬rA
24 5 23 eqeltrd φRr1B|¬rA
25 breq1 r=RrARA
26 25 notbid r=R¬rA¬RA
27 26 elrab Rr1B|¬rAR1B¬RA
28 24 27 sylib φR1B¬RA