Description: There exists a small enough number such that it does not divide A . (Contributed by metakunt, 28-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aks4d1p4.1 | |
|
aks4d1p4.2 | |
||
aks4d1p4.3 | |
||
aks4d1p4.4 | |
||
Assertion | aks4d1p4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p4.1 | |
|
2 | aks4d1p4.2 | |
|
3 | aks4d1p4.3 | |
|
4 | aks4d1p4.4 | |
|
5 | 4 | a1i | |
6 | ltso | |
|
7 | 6 | a1i | |
8 | fzfid | |
|
9 | ssrab2 | |
|
10 | 9 | a1i | |
11 | 8 10 | ssfid | |
12 | 1 2 3 | aks4d1p3 | |
13 | rabn0 | |
|
14 | 12 13 | sylibr | |
15 | elfznn | |
|
16 | 15 | adantl | |
17 | 16 | nnred | |
18 | 17 | ex | |
19 | 18 | ssrdv | |
20 | 10 19 | sstrd | |
21 | 11 14 20 | 3jca | |
22 | fiinfcl | |
|
23 | 7 21 22 | syl2anc | |
24 | 5 23 | eqeltrd | |
25 | breq1 | |
|
26 | 25 | notbid | |
27 | 26 | elrab | |
28 | 24 27 | sylib | |