Metamath Proof Explorer


Theorem aks4d1p4

Description: There exists a small enough number such that it does not divide A . (Contributed by metakunt, 28-Oct-2024)

Ref Expression
Hypotheses aks4d1p4.1 φ N 3
aks4d1p4.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p4.3 B = log 2 N 5
aks4d1p4.4 R = sup r 1 B | ¬ r A <
Assertion aks4d1p4 φ R 1 B ¬ R A

Proof

Step Hyp Ref Expression
1 aks4d1p4.1 φ N 3
2 aks4d1p4.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p4.3 B = log 2 N 5
4 aks4d1p4.4 R = sup r 1 B | ¬ r A <
5 4 a1i φ R = sup r 1 B | ¬ r A <
6 ltso < Or
7 6 a1i φ < Or
8 fzfid φ 1 B Fin
9 ssrab2 r 1 B | ¬ r A 1 B
10 9 a1i φ r 1 B | ¬ r A 1 B
11 8 10 ssfid φ r 1 B | ¬ r A Fin
12 1 2 3 aks4d1p3 φ r 1 B ¬ r A
13 rabn0 r 1 B | ¬ r A r 1 B ¬ r A
14 12 13 sylibr φ r 1 B | ¬ r A
15 elfznn o 1 B o
16 15 adantl φ o 1 B o
17 16 nnred φ o 1 B o
18 17 ex φ o 1 B o
19 18 ssrdv φ 1 B
20 10 19 sstrd φ r 1 B | ¬ r A
21 11 14 20 3jca φ r 1 B | ¬ r A Fin r 1 B | ¬ r A r 1 B | ¬ r A
22 fiinfcl < Or r 1 B | ¬ r A Fin r 1 B | ¬ r A r 1 B | ¬ r A sup r 1 B | ¬ r A < r 1 B | ¬ r A
23 7 21 22 syl2anc φ sup r 1 B | ¬ r A < r 1 B | ¬ r A
24 5 23 eqeltrd φ R r 1 B | ¬ r A
25 breq1 r = R r A R A
26 25 notbid r = R ¬ r A ¬ R A
27 26 elrab R r 1 B | ¬ r A R 1 B ¬ R A
28 24 27 sylib φ R 1 B ¬ R A