| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p4.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p4.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p4.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
|
aks4d1p4.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ) |
| 6 |
|
ltso |
⊢ < Or ℝ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 8 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ∈ Fin ) |
| 9 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) ) |
| 11 |
8 10
|
ssfid |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ) |
| 12 |
1 2 3
|
aks4d1p3 |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
| 13 |
|
rabn0 |
⊢ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ↔ ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ) |
| 15 |
|
elfznn |
⊢ ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℕ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℕ ) |
| 17 |
16
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℝ ) |
| 18 |
17
|
ex |
⊢ ( 𝜑 → ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℝ ) ) |
| 19 |
18
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ⊆ ℝ ) |
| 20 |
10 19
|
sstrd |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) |
| 21 |
11 14 20
|
3jca |
⊢ ( 𝜑 → ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) ) |
| 22 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) ) → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 23 |
7 21 22
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 24 |
5 23
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 25 |
|
breq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∥ 𝐴 ↔ 𝑅 ∥ 𝐴 ) ) |
| 26 |
25
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑟 ∥ 𝐴 ↔ ¬ 𝑅 ∥ 𝐴 ) ) |
| 27 |
26
|
elrab |
⊢ ( 𝑅 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ↔ ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 28 |
24 27
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |