| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p3.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p3.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
1 2 3
|
aks4d1p1 |
⊢ ( 𝜑 → 𝐴 < ( 2 ↑ 𝐵 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 < ( 2 ↑ 𝐵 ) ) |
| 6 |
|
2re |
⊢ 2 ∈ ℝ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 8 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 9 |
|
2pos |
⊢ 0 < 2 |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 11 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 13 |
12
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 14 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 15 |
|
3re |
⊢ 3 ∈ ℝ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 17 |
|
3pos |
⊢ 0 < 3 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 19 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 21 |
14 16 13 18 20
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 22 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 23 |
|
1lt2 |
⊢ 1 < 2 |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 25 |
22 24
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 26 |
25
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 27 |
7 10 13 21 26
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 28 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
| 30 |
27 29
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
| 31 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 33 |
8 32
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 34 |
32
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
| 35 |
8 34
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 36 |
|
7re |
⊢ 7 ∈ ℝ |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → 7 ∈ ℝ ) |
| 38 |
|
7pos |
⊢ 0 < 7 |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → 0 < 7 ) |
| 40 |
13 20
|
3lexlogpow5ineq3 |
⊢ ( 𝜑 → 7 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 41 |
14 37 30 39 40
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 42 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 43 |
30 42
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 44 |
14 30 34 41 43
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 45 |
44 8
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 46 |
14 35 45
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 47 |
33 46
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
| 48 |
|
elnn0z |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
| 49 |
47 48
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 50 |
7 49
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ 𝐵 ) ∈ ℝ ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 2 ↑ 𝐵 ) ∈ ℝ ) |
| 52 |
|
elfznn |
⊢ ( 𝑞 ∈ ( 1 ... 𝐵 ) → 𝑞 ∈ ℕ ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( 1 ... 𝐵 ) ) → 𝑞 ∈ ℕ ) |
| 54 |
53
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( 1 ... 𝐵 ) ) → 𝑞 ∈ ℤ ) |
| 55 |
54
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ ( 1 ... 𝐵 ) → 𝑞 ∈ ℤ ) ) |
| 56 |
55
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ⊆ ℤ ) |
| 57 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ∈ Fin ) |
| 58 |
|
lcmfcl |
⊢ ( ( ( 1 ... 𝐵 ) ⊆ ℤ ∧ ( 1 ... 𝐵 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℕ0 ) |
| 59 |
56 57 58
|
syl2anc |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℕ0 ) |
| 60 |
59
|
nn0red |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℝ ) |
| 61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℝ ) |
| 62 |
2
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 63 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 64 |
12 21 63
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 65 |
7 10 35 45 26
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
| 66 |
65
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
| 67 |
7 10 7 10 26
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 2 ) ∈ ℝ ) |
| 68 |
|
0le1 |
⊢ 0 ≤ 1 |
| 69 |
68
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 70 |
7
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 71 |
14 10
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 72 |
|
logbid1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 2 ) = 1 ) |
| 73 |
70 71 26 72
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 2 ) = 1 ) |
| 74 |
73
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 2 logb 2 ) ) |
| 75 |
69 74
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 2 ) ) |
| 76 |
|
2z |
⊢ 2 ∈ ℤ |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 78 |
7
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 79 |
|
2lt7 |
⊢ 2 < 7 |
| 80 |
79
|
a1i |
⊢ ( 𝜑 → 2 < 7 ) |
| 81 |
7 37 80
|
ltled |
⊢ ( 𝜑 → 2 ≤ 7 ) |
| 82 |
37 30 34 40 43
|
ltletrd |
⊢ ( 𝜑 → 7 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 83 |
82 8
|
breqtrrd |
⊢ ( 𝜑 → 7 < 𝐵 ) |
| 84 |
37 35 83
|
ltled |
⊢ ( 𝜑 → 7 ≤ 𝐵 ) |
| 85 |
7 37 35 81 84
|
letrd |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
| 86 |
77 78 7 10 35 45 85
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 2 ) ≤ ( 2 logb 𝐵 ) ) |
| 87 |
14 67 65 75 86
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝐵 ) ) |
| 88 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 89 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 90 |
65 88 89
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 91 |
87 90
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 92 |
66 91
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 93 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 94 |
92 93
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 95 |
64 94
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℕ ) |
| 96 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∈ Fin ) |
| 97 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 98 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ℕ ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 100 |
99
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 101 |
|
zexpcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
| 102 |
97 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
| 103 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
| 104 |
102 103
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 105 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℂ ) |
| 106 |
105
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 1 + 0 ) = 1 ) |
| 107 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℝ ) |
| 108 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 109 |
108
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 110 |
13 109
|
reexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 1 ) ∈ ℝ ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 1 ) ∈ ℝ ) |
| 112 |
102
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℝ ) |
| 113 |
|
1lt3 |
⊢ 1 < 3 |
| 114 |
113
|
a1i |
⊢ ( 𝜑 → 1 < 3 ) |
| 115 |
22 16 13 114 20
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝑁 ) |
| 116 |
13
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 117 |
116
|
exp1d |
⊢ ( 𝜑 → ( 𝑁 ↑ 1 ) = 𝑁 ) |
| 118 |
117
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 𝑁 ↑ 1 ) ) |
| 119 |
115 118
|
breqtrd |
⊢ ( 𝜑 → 1 < ( 𝑁 ↑ 1 ) ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 < ( 𝑁 ↑ 1 ) ) |
| 121 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℝ ) |
| 122 |
64
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
| 123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ≤ 𝑁 ) |
| 124 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 126 |
121 123 125
|
leexp2ad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 1 ) ≤ ( 𝑁 ↑ 𝑘 ) ) |
| 127 |
107 111 112 120 126
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 < ( 𝑁 ↑ 𝑘 ) ) |
| 128 |
106 127
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 1 + 0 ) < ( 𝑁 ↑ 𝑘 ) ) |
| 129 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 0 ∈ ℝ ) |
| 130 |
107 129 112
|
ltaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 1 + 0 ) < ( 𝑁 ↑ 𝑘 ) ↔ 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 131 |
128 130
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 132 |
104 131
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 133 |
|
elnnz |
⊢ ( ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℕ ↔ ( ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 134 |
132 133
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℕ ) |
| 135 |
96 134
|
fprodnncl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℕ ) |
| 136 |
95 135
|
nnmulcld |
⊢ ( 𝜑 → ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ∈ ℕ ) |
| 137 |
62 136
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 138 |
137
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 140 |
1 2 3
|
aks4d1p2 |
⊢ ( 𝜑 → ( 2 ↑ 𝐵 ) ≤ ( lcm ‘ ( 1 ... 𝐵 ) ) ) |
| 141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 2 ↑ 𝐵 ) ≤ ( lcm ‘ ( 1 ... 𝐵 ) ) ) |
| 142 |
137
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 ∈ ℤ ) |
| 144 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 1 ... 𝐵 ) ⊆ ℤ ) |
| 145 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 1 ... 𝐵 ) ∈ Fin ) |
| 146 |
|
lcmfdvdsb |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 1 ... 𝐵 ) ⊆ ℤ ∧ ( 1 ... 𝐵 ) ∈ Fin ) → ( ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ↔ ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) ) |
| 147 |
143 144 145 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ↔ ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) ) |
| 148 |
147
|
biimpd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) ) |
| 149 |
148
|
syldbl2 |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) |
| 150 |
59
|
nn0zd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℤ ) |
| 151 |
150
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℤ ) |
| 152 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 ∈ ℕ ) |
| 153 |
|
dvdsle |
⊢ ( ( ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 → ( lcm ‘ ( 1 ... 𝐵 ) ) ≤ 𝐴 ) ) |
| 154 |
151 152 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 → ( lcm ‘ ( 1 ... 𝐵 ) ) ≤ 𝐴 ) ) |
| 155 |
149 154
|
mpd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ≤ 𝐴 ) |
| 156 |
51 61 139 141 155
|
letrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 2 ↑ 𝐵 ) ≤ 𝐴 ) |
| 157 |
51 139
|
lenltd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ( 2 ↑ 𝐵 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 2 ↑ 𝐵 ) ) ) |
| 158 |
156 157
|
mpbid |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ¬ 𝐴 < ( 2 ↑ 𝐵 ) ) |
| 159 |
5 158
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
| 160 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
| 161 |
159 160
|
pm2.61dan |
⊢ ( 𝜑 → ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
| 162 |
|
rexnal |
⊢ ( ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ↔ ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
| 163 |
161 162
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |