Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p3.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
2 |
|
aks4d1p3.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
3 |
|
aks4d1p3.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
4 |
1 2 3
|
aks4d1p1 |
⊢ ( 𝜑 → 𝐴 < ( 2 ↑ 𝐵 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 < ( 2 ↑ 𝐵 ) ) |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
6
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
8 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
9 |
|
2pos |
⊢ 0 < 2 |
10 |
9
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
11 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
13 |
12
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
14 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
15 |
|
3re |
⊢ 3 ∈ ℝ |
16 |
15
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
17 |
|
3pos |
⊢ 0 < 3 |
18 |
17
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
19 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
21 |
14 16 13 18 20
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
22 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
23 |
|
1lt2 |
⊢ 1 < 2 |
24 |
23
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
25 |
22 24
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
26 |
25
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
27 |
7 10 13 21 26
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
28 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
29 |
28
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
30 |
27 29
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
31 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
33 |
8 32
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
34 |
32
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
35 |
8 34
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
36 |
|
7re |
⊢ 7 ∈ ℝ |
37 |
36
|
a1i |
⊢ ( 𝜑 → 7 ∈ ℝ ) |
38 |
|
7pos |
⊢ 0 < 7 |
39 |
38
|
a1i |
⊢ ( 𝜑 → 0 < 7 ) |
40 |
13 20
|
3lexlogpow5ineq3 |
⊢ ( 𝜑 → 7 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
41 |
14 37 30 39 40
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
42 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
43 |
30 42
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
44 |
14 30 34 41 43
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
45 |
44 8
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
46 |
14 35 45
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
47 |
33 46
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
48 |
|
elnn0z |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℤ ∧ 0 ≤ 𝐵 ) ) |
49 |
47 48
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
50 |
7 49
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ 𝐵 ) ∈ ℝ ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 2 ↑ 𝐵 ) ∈ ℝ ) |
52 |
|
elfznn |
⊢ ( 𝑞 ∈ ( 1 ... 𝐵 ) → 𝑞 ∈ ℕ ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( 1 ... 𝐵 ) ) → 𝑞 ∈ ℕ ) |
54 |
53
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( 1 ... 𝐵 ) ) → 𝑞 ∈ ℤ ) |
55 |
54
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ ( 1 ... 𝐵 ) → 𝑞 ∈ ℤ ) ) |
56 |
55
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ⊆ ℤ ) |
57 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ∈ Fin ) |
58 |
|
lcmfcl |
⊢ ( ( ( 1 ... 𝐵 ) ⊆ ℤ ∧ ( 1 ... 𝐵 ) ∈ Fin ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℕ0 ) |
59 |
56 57 58
|
syl2anc |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℕ0 ) |
60 |
59
|
nn0red |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℝ ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℝ ) |
62 |
2
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
63 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
64 |
12 21 63
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
65 |
7 10 35 45 26
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
66 |
65
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
67 |
7 10 7 10 26
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 2 ) ∈ ℝ ) |
68 |
|
0le1 |
⊢ 0 ≤ 1 |
69 |
68
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
70 |
7
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
71 |
14 10
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
72 |
|
logbid1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 2 ) = 1 ) |
73 |
70 71 26 72
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 2 ) = 1 ) |
74 |
73
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 2 logb 2 ) ) |
75 |
69 74
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 2 ) ) |
76 |
|
2z |
⊢ 2 ∈ ℤ |
77 |
76
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
78 |
7
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
79 |
|
2lt7 |
⊢ 2 < 7 |
80 |
79
|
a1i |
⊢ ( 𝜑 → 2 < 7 ) |
81 |
7 37 80
|
ltled |
⊢ ( 𝜑 → 2 ≤ 7 ) |
82 |
37 30 34 40 43
|
ltletrd |
⊢ ( 𝜑 → 7 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
83 |
82 8
|
breqtrrd |
⊢ ( 𝜑 → 7 < 𝐵 ) |
84 |
37 35 83
|
ltled |
⊢ ( 𝜑 → 7 ≤ 𝐵 ) |
85 |
7 37 35 81 84
|
letrd |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
86 |
77 78 7 10 35 45 85
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 2 ) ≤ ( 2 logb 𝐵 ) ) |
87 |
14 67 65 75 86
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝐵 ) ) |
88 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
89 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
90 |
65 88 89
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
91 |
87 90
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
92 |
66 91
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
93 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
94 |
92 93
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
95 |
64 94
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℕ ) |
96 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∈ Fin ) |
97 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
98 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ℕ ) |
99 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
100 |
99
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
101 |
|
zexpcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
102 |
97 100 101
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
103 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
104 |
102 103
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
105 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℂ ) |
106 |
105
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 1 + 0 ) = 1 ) |
107 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℝ ) |
108 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
109 |
108
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
110 |
13 109
|
reexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ 1 ) ∈ ℝ ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 1 ) ∈ ℝ ) |
112 |
102
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℝ ) |
113 |
|
1lt3 |
⊢ 1 < 3 |
114 |
113
|
a1i |
⊢ ( 𝜑 → 1 < 3 ) |
115 |
22 16 13 114 20
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝑁 ) |
116 |
13
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
117 |
116
|
exp1d |
⊢ ( 𝜑 → ( 𝑁 ↑ 1 ) = 𝑁 ) |
118 |
117
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( 𝑁 ↑ 1 ) ) |
119 |
115 118
|
breqtrd |
⊢ ( 𝜑 → 1 < ( 𝑁 ↑ 1 ) ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 < ( 𝑁 ↑ 1 ) ) |
121 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℝ ) |
122 |
64
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
123 |
122
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ≤ 𝑁 ) |
124 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
126 |
121 123 125
|
leexp2ad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 1 ) ≤ ( 𝑁 ↑ 𝑘 ) ) |
127 |
107 111 112 120 126
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 < ( 𝑁 ↑ 𝑘 ) ) |
128 |
106 127
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 1 + 0 ) < ( 𝑁 ↑ 𝑘 ) ) |
129 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 0 ∈ ℝ ) |
130 |
107 129 112
|
ltaddsub2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 1 + 0 ) < ( 𝑁 ↑ 𝑘 ) ↔ 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
131 |
128 130
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
132 |
104 131
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
133 |
|
elnnz |
⊢ ( ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℕ ↔ ( ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
134 |
132 133
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℕ ) |
135 |
96 134
|
fprodnncl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℕ ) |
136 |
95 135
|
nnmulcld |
⊢ ( 𝜑 → ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ∈ ℕ ) |
137 |
62 136
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
138 |
137
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 ∈ ℝ ) |
140 |
1 2 3
|
aks4d1p2 |
⊢ ( 𝜑 → ( 2 ↑ 𝐵 ) ≤ ( lcm ‘ ( 1 ... 𝐵 ) ) ) |
141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 2 ↑ 𝐵 ) ≤ ( lcm ‘ ( 1 ... 𝐵 ) ) ) |
142 |
137
|
nnzd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 ∈ ℤ ) |
144 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 1 ... 𝐵 ) ⊆ ℤ ) |
145 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 1 ... 𝐵 ) ∈ Fin ) |
146 |
|
lcmfdvdsb |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 1 ... 𝐵 ) ⊆ ℤ ∧ ( 1 ... 𝐵 ) ∈ Fin ) → ( ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ↔ ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) ) |
147 |
143 144 145 146
|
syl3anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ↔ ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) ) |
148 |
147
|
biimpd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) ) |
149 |
148
|
syldbl2 |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 ) |
150 |
59
|
nn0zd |
⊢ ( 𝜑 → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℤ ) |
151 |
150
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℤ ) |
152 |
137
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → 𝐴 ∈ ℕ ) |
153 |
|
dvdsle |
⊢ ( ( ( lcm ‘ ( 1 ... 𝐵 ) ) ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 → ( lcm ‘ ( 1 ... 𝐵 ) ) ≤ 𝐴 ) ) |
154 |
151 152 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ( lcm ‘ ( 1 ... 𝐵 ) ) ∥ 𝐴 → ( lcm ‘ ( 1 ... 𝐵 ) ) ≤ 𝐴 ) ) |
155 |
149 154
|
mpd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( lcm ‘ ( 1 ... 𝐵 ) ) ≤ 𝐴 ) |
156 |
51 61 139 141 155
|
letrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( 2 ↑ 𝐵 ) ≤ 𝐴 ) |
157 |
51 139
|
lenltd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ( ( 2 ↑ 𝐵 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 2 ↑ 𝐵 ) ) ) |
158 |
156 157
|
mpbid |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ¬ 𝐴 < ( 2 ↑ 𝐵 ) ) |
159 |
5 158
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
160 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) → ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
161 |
159 160
|
pm2.61dan |
⊢ ( 𝜑 → ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
162 |
|
rexnal |
⊢ ( ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ↔ ¬ ∀ 𝑟 ∈ ( 1 ... 𝐵 ) 𝑟 ∥ 𝐴 ) |
163 |
161 162
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |