Metamath Proof Explorer


Theorem aks4d1p3

Description: There exists a small enough number such that it does not divide A . (Contributed by metakunt, 27-Oct-2024)

Ref Expression
Hypotheses aks4d1p3.1 φ N 3
aks4d1p3.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p3.3 B = log 2 N 5
Assertion aks4d1p3 φ r 1 B ¬ r A

Proof

Step Hyp Ref Expression
1 aks4d1p3.1 φ N 3
2 aks4d1p3.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p3.3 B = log 2 N 5
4 1 2 3 aks4d1p1 φ A < 2 B
5 4 adantr φ r 1 B r A A < 2 B
6 2re 2
7 6 a1i φ 2
8 3 a1i φ B = log 2 N 5
9 2pos 0 < 2
10 9 a1i φ 0 < 2
11 eluzelz N 3 N
12 1 11 syl φ N
13 12 zred φ N
14 0red φ 0
15 3re 3
16 15 a1i φ 3
17 3pos 0 < 3
18 17 a1i φ 0 < 3
19 eluzle N 3 3 N
20 1 19 syl φ 3 N
21 14 16 13 18 20 ltletrd φ 0 < N
22 1red φ 1
23 1lt2 1 < 2
24 23 a1i φ 1 < 2
25 22 24 ltned φ 1 2
26 25 necomd φ 2 1
27 7 10 13 21 26 relogbcld φ log 2 N
28 5nn0 5 0
29 28 a1i φ 5 0
30 27 29 reexpcld φ log 2 N 5
31 ceilcl log 2 N 5 log 2 N 5
32 30 31 syl φ log 2 N 5
33 8 32 eqeltrd φ B
34 32 zred φ log 2 N 5
35 8 34 eqeltrd φ B
36 7re 7
37 36 a1i φ 7
38 7pos 0 < 7
39 38 a1i φ 0 < 7
40 13 20 3lexlogpow5ineq3 φ 7 < log 2 N 5
41 14 37 30 39 40 lttrd φ 0 < log 2 N 5
42 ceilge log 2 N 5 log 2 N 5 log 2 N 5
43 30 42 syl φ log 2 N 5 log 2 N 5
44 14 30 34 41 43 ltletrd φ 0 < log 2 N 5
45 44 8 breqtrrd φ 0 < B
46 14 35 45 ltled φ 0 B
47 33 46 jca φ B 0 B
48 elnn0z B 0 B 0 B
49 47 48 sylibr φ B 0
50 7 49 reexpcld φ 2 B
51 50 adantr φ r 1 B r A 2 B
52 elfznn q 1 B q
53 52 adantl φ q 1 B q
54 53 nnzd φ q 1 B q
55 54 ex φ q 1 B q
56 55 ssrdv φ 1 B
57 fzfid φ 1 B Fin
58 lcmfcl 1 B 1 B Fin lcm _ 1 B 0
59 56 57 58 syl2anc φ lcm _ 1 B 0
60 59 nn0red φ lcm _ 1 B
61 60 adantr φ r 1 B r A lcm _ 1 B
62 2 a1i φ A = N log 2 B k = 1 log 2 N 2 N k 1
63 elnnz N N 0 < N
64 12 21 63 sylanbrc φ N
65 7 10 35 45 26 relogbcld φ log 2 B
66 65 flcld φ log 2 B
67 7 10 7 10 26 relogbcld φ log 2 2
68 0le1 0 1
69 68 a1i φ 0 1
70 7 recnd φ 2
71 14 10 gtned φ 2 0
72 logbid1 2 2 0 2 1 log 2 2 = 1
73 70 71 26 72 syl3anc φ log 2 2 = 1
74 73 eqcomd φ 1 = log 2 2
75 69 74 breqtrd φ 0 log 2 2
76 2z 2
77 76 a1i φ 2
78 7 leidd φ 2 2
79 2lt7 2 < 7
80 79 a1i φ 2 < 7
81 7 37 80 ltled φ 2 7
82 37 30 34 40 43 ltletrd φ 7 < log 2 N 5
83 82 8 breqtrrd φ 7 < B
84 37 35 83 ltled φ 7 B
85 7 37 35 81 84 letrd φ 2 B
86 77 78 7 10 35 45 85 logblebd φ log 2 2 log 2 B
87 14 67 65 75 86 letrd φ 0 log 2 B
88 0zd φ 0
89 flge log 2 B 0 0 log 2 B 0 log 2 B
90 65 88 89 syl2anc φ 0 log 2 B 0 log 2 B
91 87 90 mpbid φ 0 log 2 B
92 66 91 jca φ log 2 B 0 log 2 B
93 elnn0z log 2 B 0 log 2 B 0 log 2 B
94 92 93 sylibr φ log 2 B 0
95 64 94 nnexpcld φ N log 2 B
96 fzfid φ 1 log 2 N 2 Fin
97 12 adantr φ k 1 log 2 N 2 N
98 elfznn k 1 log 2 N 2 k
99 98 adantl φ k 1 log 2 N 2 k
100 99 nnnn0d φ k 1 log 2 N 2 k 0
101 zexpcl N k 0 N k
102 97 100 101 syl2anc φ k 1 log 2 N 2 N k
103 1zzd φ k 1 log 2 N 2 1
104 102 103 zsubcld φ k 1 log 2 N 2 N k 1
105 1cnd φ k 1 log 2 N 2 1
106 105 addid1d φ k 1 log 2 N 2 1 + 0 = 1
107 22 adantr φ k 1 log 2 N 2 1
108 1nn0 1 0
109 108 a1i φ 1 0
110 13 109 reexpcld φ N 1
111 110 adantr φ k 1 log 2 N 2 N 1
112 102 zred φ k 1 log 2 N 2 N k
113 1lt3 1 < 3
114 113 a1i φ 1 < 3
115 22 16 13 114 20 ltletrd φ 1 < N
116 13 recnd φ N
117 116 exp1d φ N 1 = N
118 117 eqcomd φ N = N 1
119 115 118 breqtrd φ 1 < N 1
120 119 adantr φ k 1 log 2 N 2 1 < N 1
121 13 adantr φ k 1 log 2 N 2 N
122 64 nnge1d φ 1 N
123 122 adantr φ k 1 log 2 N 2 1 N
124 elfzuz k 1 log 2 N 2 k 1
125 124 adantl φ k 1 log 2 N 2 k 1
126 121 123 125 leexp2ad φ k 1 log 2 N 2 N 1 N k
127 107 111 112 120 126 ltletrd φ k 1 log 2 N 2 1 < N k
128 106 127 eqbrtrd φ k 1 log 2 N 2 1 + 0 < N k
129 14 adantr φ k 1 log 2 N 2 0
130 107 129 112 ltaddsub2d φ k 1 log 2 N 2 1 + 0 < N k 0 < N k 1
131 128 130 mpbid φ k 1 log 2 N 2 0 < N k 1
132 104 131 jca φ k 1 log 2 N 2 N k 1 0 < N k 1
133 elnnz N k 1 N k 1 0 < N k 1
134 132 133 sylibr φ k 1 log 2 N 2 N k 1
135 96 134 fprodnncl φ k = 1 log 2 N 2 N k 1
136 95 135 nnmulcld φ N log 2 B k = 1 log 2 N 2 N k 1
137 62 136 eqeltrd φ A
138 137 nnred φ A
139 138 adantr φ r 1 B r A A
140 1 2 3 aks4d1p2 φ 2 B lcm _ 1 B
141 140 adantr φ r 1 B r A 2 B lcm _ 1 B
142 137 nnzd φ A
143 142 adantr φ r 1 B r A A
144 56 adantr φ r 1 B r A 1 B
145 fzfid φ r 1 B r A 1 B Fin
146 lcmfdvdsb A 1 B 1 B Fin r 1 B r A lcm _ 1 B A
147 143 144 145 146 syl3anc φ r 1 B r A r 1 B r A lcm _ 1 B A
148 147 biimpd φ r 1 B r A r 1 B r A lcm _ 1 B A
149 148 syldbl2 φ r 1 B r A lcm _ 1 B A
150 59 nn0zd φ lcm _ 1 B
151 150 adantr φ r 1 B r A lcm _ 1 B
152 137 adantr φ r 1 B r A A
153 dvdsle lcm _ 1 B A lcm _ 1 B A lcm _ 1 B A
154 151 152 153 syl2anc φ r 1 B r A lcm _ 1 B A lcm _ 1 B A
155 149 154 mpd φ r 1 B r A lcm _ 1 B A
156 51 61 139 141 155 letrd φ r 1 B r A 2 B A
157 51 139 lenltd φ r 1 B r A 2 B A ¬ A < 2 B
158 156 157 mpbid φ r 1 B r A ¬ A < 2 B
159 5 158 pm2.21dd φ r 1 B r A ¬ r 1 B r A
160 simpr φ ¬ r 1 B r A ¬ r 1 B r A
161 159 160 pm2.61dan φ ¬ r 1 B r A
162 rexnal r 1 B ¬ r A ¬ r 1 B r A
163 161 162 sylibr φ r 1 B ¬ r A