Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p3.1 |
|
2 |
|
aks4d1p3.2 |
|
3 |
|
aks4d1p3.3 |
|
4 |
1 2 3
|
aks4d1p1 |
|
5 |
4
|
adantr |
|
6 |
|
2re |
|
7 |
6
|
a1i |
|
8 |
3
|
a1i |
|
9 |
|
2pos |
|
10 |
9
|
a1i |
|
11 |
|
eluzelz |
|
12 |
1 11
|
syl |
|
13 |
12
|
zred |
|
14 |
|
0red |
|
15 |
|
3re |
|
16 |
15
|
a1i |
|
17 |
|
3pos |
|
18 |
17
|
a1i |
|
19 |
|
eluzle |
|
20 |
1 19
|
syl |
|
21 |
14 16 13 18 20
|
ltletrd |
|
22 |
|
1red |
|
23 |
|
1lt2 |
|
24 |
23
|
a1i |
|
25 |
22 24
|
ltned |
|
26 |
25
|
necomd |
|
27 |
7 10 13 21 26
|
relogbcld |
|
28 |
|
5nn0 |
|
29 |
28
|
a1i |
|
30 |
27 29
|
reexpcld |
|
31 |
|
ceilcl |
|
32 |
30 31
|
syl |
|
33 |
8 32
|
eqeltrd |
|
34 |
32
|
zred |
|
35 |
8 34
|
eqeltrd |
|
36 |
|
7re |
|
37 |
36
|
a1i |
|
38 |
|
7pos |
|
39 |
38
|
a1i |
|
40 |
13 20
|
3lexlogpow5ineq3 |
|
41 |
14 37 30 39 40
|
lttrd |
|
42 |
|
ceilge |
|
43 |
30 42
|
syl |
|
44 |
14 30 34 41 43
|
ltletrd |
|
45 |
44 8
|
breqtrrd |
|
46 |
14 35 45
|
ltled |
|
47 |
33 46
|
jca |
|
48 |
|
elnn0z |
|
49 |
47 48
|
sylibr |
|
50 |
7 49
|
reexpcld |
|
51 |
50
|
adantr |
|
52 |
|
elfznn |
|
53 |
52
|
adantl |
|
54 |
53
|
nnzd |
|
55 |
54
|
ex |
|
56 |
55
|
ssrdv |
|
57 |
|
fzfid |
|
58 |
|
lcmfcl |
|
59 |
56 57 58
|
syl2anc |
|
60 |
59
|
nn0red |
|
61 |
60
|
adantr |
|
62 |
2
|
a1i |
|
63 |
|
elnnz |
|
64 |
12 21 63
|
sylanbrc |
|
65 |
7 10 35 45 26
|
relogbcld |
|
66 |
65
|
flcld |
|
67 |
7 10 7 10 26
|
relogbcld |
|
68 |
|
0le1 |
|
69 |
68
|
a1i |
|
70 |
7
|
recnd |
|
71 |
14 10
|
gtned |
|
72 |
|
logbid1 |
|
73 |
70 71 26 72
|
syl3anc |
|
74 |
73
|
eqcomd |
|
75 |
69 74
|
breqtrd |
|
76 |
|
2z |
|
77 |
76
|
a1i |
|
78 |
7
|
leidd |
|
79 |
|
2lt7 |
|
80 |
79
|
a1i |
|
81 |
7 37 80
|
ltled |
|
82 |
37 30 34 40 43
|
ltletrd |
|
83 |
82 8
|
breqtrrd |
|
84 |
37 35 83
|
ltled |
|
85 |
7 37 35 81 84
|
letrd |
|
86 |
77 78 7 10 35 45 85
|
logblebd |
|
87 |
14 67 65 75 86
|
letrd |
|
88 |
|
0zd |
|
89 |
|
flge |
|
90 |
65 88 89
|
syl2anc |
|
91 |
87 90
|
mpbid |
|
92 |
66 91
|
jca |
|
93 |
|
elnn0z |
|
94 |
92 93
|
sylibr |
|
95 |
64 94
|
nnexpcld |
|
96 |
|
fzfid |
|
97 |
12
|
adantr |
|
98 |
|
elfznn |
|
99 |
98
|
adantl |
|
100 |
99
|
nnnn0d |
|
101 |
|
zexpcl |
|
102 |
97 100 101
|
syl2anc |
|
103 |
|
1zzd |
|
104 |
102 103
|
zsubcld |
|
105 |
|
1cnd |
|
106 |
105
|
addid1d |
|
107 |
22
|
adantr |
|
108 |
|
1nn0 |
|
109 |
108
|
a1i |
|
110 |
13 109
|
reexpcld |
|
111 |
110
|
adantr |
|
112 |
102
|
zred |
|
113 |
|
1lt3 |
|
114 |
113
|
a1i |
|
115 |
22 16 13 114 20
|
ltletrd |
|
116 |
13
|
recnd |
|
117 |
116
|
exp1d |
|
118 |
117
|
eqcomd |
|
119 |
115 118
|
breqtrd |
|
120 |
119
|
adantr |
|
121 |
13
|
adantr |
|
122 |
64
|
nnge1d |
|
123 |
122
|
adantr |
|
124 |
|
elfzuz |
|
125 |
124
|
adantl |
|
126 |
121 123 125
|
leexp2ad |
|
127 |
107 111 112 120 126
|
ltletrd |
|
128 |
106 127
|
eqbrtrd |
|
129 |
14
|
adantr |
|
130 |
107 129 112
|
ltaddsub2d |
|
131 |
128 130
|
mpbid |
|
132 |
104 131
|
jca |
|
133 |
|
elnnz |
|
134 |
132 133
|
sylibr |
|
135 |
96 134
|
fprodnncl |
|
136 |
95 135
|
nnmulcld |
|
137 |
62 136
|
eqeltrd |
|
138 |
137
|
nnred |
|
139 |
138
|
adantr |
|
140 |
1 2 3
|
aks4d1p2 |
|
141 |
140
|
adantr |
|
142 |
137
|
nnzd |
|
143 |
142
|
adantr |
|
144 |
56
|
adantr |
|
145 |
|
fzfid |
|
146 |
|
lcmfdvdsb |
|
147 |
143 144 145 146
|
syl3anc |
|
148 |
147
|
biimpd |
|
149 |
148
|
syldbl2 |
|
150 |
59
|
nn0zd |
|
151 |
150
|
adantr |
|
152 |
137
|
adantr |
|
153 |
|
dvdsle |
|
154 |
151 152 153
|
syl2anc |
|
155 |
149 154
|
mpd |
|
156 |
51 61 139 141 155
|
letrd |
|
157 |
51 139
|
lenltd |
|
158 |
156 157
|
mpbid |
|
159 |
5 158
|
pm2.21dd |
|
160 |
|
simpr |
|
161 |
159 160
|
pm2.61dan |
|
162 |
|
rexnal |
|
163 |
161 162
|
sylibr |
|