Metamath Proof Explorer


Theorem aks4d1p2

Description: Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024)

Ref Expression
Hypotheses aks4d1p2.1 φ N 3
aks4d1p2.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p2.3 B = log 2 N 5
Assertion aks4d1p2 φ 2 B lcm _ 1 B

Proof

Step Hyp Ref Expression
1 aks4d1p2.1 φ N 3
2 aks4d1p2.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p2.3 B = log 2 N 5
4 3 a1i φ B = log 2 N 5
5 2re 2
6 5 a1i φ 2
7 2pos 0 < 2
8 7 a1i φ 0 < 2
9 eluzelz N 3 N
10 1 9 syl φ N
11 10 zred φ N
12 0red φ 0
13 3re 3
14 13 a1i φ 3
15 3pos 0 < 3
16 15 a1i φ 0 < 3
17 eluzle N 3 3 N
18 1 17 syl φ 3 N
19 12 14 11 16 18 ltletrd φ 0 < N
20 1red φ 1
21 1lt2 1 < 2
22 21 a1i φ 1 < 2
23 20 22 ltned φ 1 2
24 23 necomd φ 2 1
25 6 8 11 19 24 relogbcld φ log 2 N
26 5nn0 5 0
27 26 a1i φ 5 0
28 25 27 reexpcld φ log 2 N 5
29 ceilcl log 2 N 5 log 2 N 5
30 28 29 syl φ log 2 N 5
31 4 30 eqeltrd φ B
32 30 zred φ log 2 N 5
33 7re 7
34 33 a1i φ 7
35 7pos 0 < 7
36 35 a1i φ 0 < 7
37 11 18 3lexlogpow5ineq3 φ 7 < log 2 N 5
38 12 34 28 36 37 lttrd φ 0 < log 2 N 5
39 ceilge log 2 N 5 log 2 N 5 log 2 N 5
40 28 39 syl φ log 2 N 5 log 2 N 5
41 12 28 32 38 40 ltletrd φ 0 < log 2 N 5
42 41 4 breqtrrd φ 0 < B
43 31 42 jca φ B 0 < B
44 elnnz B B 0 < B
45 43 44 sylibr φ B
46 34 28 37 ltled φ 7 log 2 N 5
47 34 28 32 46 40 letrd φ 7 log 2 N 5
48 47 4 breqtrrd φ 7 B
49 45 48 lcmineqlem φ 2 B lcm _ 1 B