Metamath Proof Explorer


Theorem aks4d1p2

Description: Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024)

Ref Expression
Hypotheses aks4d1p2.1
|- ( ph -> N e. ( ZZ>= ` 3 ) )
aks4d1p2.2
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) )
aks4d1p2.3
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) )
Assertion aks4d1p2
|- ( ph -> ( 2 ^ B ) <_ ( _lcm ` ( 1 ... B ) ) )

Proof

Step Hyp Ref Expression
1 aks4d1p2.1
 |-  ( ph -> N e. ( ZZ>= ` 3 ) )
2 aks4d1p2.2
 |-  A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) )
3 aks4d1p2.3
 |-  B = ( |^ ` ( ( 2 logb N ) ^ 5 ) )
4 3 a1i
 |-  ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
5 2re
 |-  2 e. RR
6 5 a1i
 |-  ( ph -> 2 e. RR )
7 2pos
 |-  0 < 2
8 7 a1i
 |-  ( ph -> 0 < 2 )
9 eluzelz
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ )
10 1 9 syl
 |-  ( ph -> N e. ZZ )
11 10 zred
 |-  ( ph -> N e. RR )
12 0red
 |-  ( ph -> 0 e. RR )
13 3re
 |-  3 e. RR
14 13 a1i
 |-  ( ph -> 3 e. RR )
15 3pos
 |-  0 < 3
16 15 a1i
 |-  ( ph -> 0 < 3 )
17 eluzle
 |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N )
18 1 17 syl
 |-  ( ph -> 3 <_ N )
19 12 14 11 16 18 ltletrd
 |-  ( ph -> 0 < N )
20 1red
 |-  ( ph -> 1 e. RR )
21 1lt2
 |-  1 < 2
22 21 a1i
 |-  ( ph -> 1 < 2 )
23 20 22 ltned
 |-  ( ph -> 1 =/= 2 )
24 23 necomd
 |-  ( ph -> 2 =/= 1 )
25 6 8 11 19 24 relogbcld
 |-  ( ph -> ( 2 logb N ) e. RR )
26 5nn0
 |-  5 e. NN0
27 26 a1i
 |-  ( ph -> 5 e. NN0 )
28 25 27 reexpcld
 |-  ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR )
29 ceilcl
 |-  ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ )
30 28 29 syl
 |-  ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ )
31 4 30 eqeltrd
 |-  ( ph -> B e. ZZ )
32 30 zred
 |-  ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR )
33 7re
 |-  7 e. RR
34 33 a1i
 |-  ( ph -> 7 e. RR )
35 7pos
 |-  0 < 7
36 35 a1i
 |-  ( ph -> 0 < 7 )
37 11 18 3lexlogpow5ineq3
 |-  ( ph -> 7 < ( ( 2 logb N ) ^ 5 ) )
38 12 34 28 36 37 lttrd
 |-  ( ph -> 0 < ( ( 2 logb N ) ^ 5 ) )
39 ceilge
 |-  ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
40 28 39 syl
 |-  ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
41 12 28 32 38 40 ltletrd
 |-  ( ph -> 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
42 41 4 breqtrrd
 |-  ( ph -> 0 < B )
43 31 42 jca
 |-  ( ph -> ( B e. ZZ /\ 0 < B ) )
44 elnnz
 |-  ( B e. NN <-> ( B e. ZZ /\ 0 < B ) )
45 43 44 sylibr
 |-  ( ph -> B e. NN )
46 34 28 37 ltled
 |-  ( ph -> 7 <_ ( ( 2 logb N ) ^ 5 ) )
47 34 28 32 46 40 letrd
 |-  ( ph -> 7 <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
48 47 4 breqtrrd
 |-  ( ph -> 7 <_ B )
49 45 48 lcmineqlem
 |-  ( ph -> ( 2 ^ B ) <_ ( _lcm ` ( 1 ... B ) ) )