| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p2.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1p2.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 3 |
|
aks4d1p2.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 4 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 5 |
|
2re |
|- 2 e. RR |
| 6 |
5
|
a1i |
|- ( ph -> 2 e. RR ) |
| 7 |
|
2pos |
|- 0 < 2 |
| 8 |
7
|
a1i |
|- ( ph -> 0 < 2 ) |
| 9 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 10 |
1 9
|
syl |
|- ( ph -> N e. ZZ ) |
| 11 |
10
|
zred |
|- ( ph -> N e. RR ) |
| 12 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 13 |
|
3re |
|- 3 e. RR |
| 14 |
13
|
a1i |
|- ( ph -> 3 e. RR ) |
| 15 |
|
3pos |
|- 0 < 3 |
| 16 |
15
|
a1i |
|- ( ph -> 0 < 3 ) |
| 17 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 18 |
1 17
|
syl |
|- ( ph -> 3 <_ N ) |
| 19 |
12 14 11 16 18
|
ltletrd |
|- ( ph -> 0 < N ) |
| 20 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 21 |
|
1lt2 |
|- 1 < 2 |
| 22 |
21
|
a1i |
|- ( ph -> 1 < 2 ) |
| 23 |
20 22
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 24 |
23
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 25 |
6 8 11 19 24
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 26 |
|
5nn0 |
|- 5 e. NN0 |
| 27 |
26
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 28 |
25 27
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
| 29 |
|
ceilcl |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 30 |
28 29
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 31 |
4 30
|
eqeltrd |
|- ( ph -> B e. ZZ ) |
| 32 |
30
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
| 33 |
|
7re |
|- 7 e. RR |
| 34 |
33
|
a1i |
|- ( ph -> 7 e. RR ) |
| 35 |
|
7pos |
|- 0 < 7 |
| 36 |
35
|
a1i |
|- ( ph -> 0 < 7 ) |
| 37 |
11 18
|
3lexlogpow5ineq3 |
|- ( ph -> 7 < ( ( 2 logb N ) ^ 5 ) ) |
| 38 |
12 34 28 36 37
|
lttrd |
|- ( ph -> 0 < ( ( 2 logb N ) ^ 5 ) ) |
| 39 |
|
ceilge |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 40 |
28 39
|
syl |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 41 |
12 28 32 38 40
|
ltletrd |
|- ( ph -> 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 42 |
41 4
|
breqtrrd |
|- ( ph -> 0 < B ) |
| 43 |
31 42
|
jca |
|- ( ph -> ( B e. ZZ /\ 0 < B ) ) |
| 44 |
|
elnnz |
|- ( B e. NN <-> ( B e. ZZ /\ 0 < B ) ) |
| 45 |
43 44
|
sylibr |
|- ( ph -> B e. NN ) |
| 46 |
34 28 37
|
ltled |
|- ( ph -> 7 <_ ( ( 2 logb N ) ^ 5 ) ) |
| 47 |
34 28 32 46 40
|
letrd |
|- ( ph -> 7 <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 48 |
47 4
|
breqtrrd |
|- ( ph -> 7 <_ B ) |
| 49 |
45 48
|
lcmineqlem |
|- ( ph -> ( 2 ^ B ) <_ ( _lcm ` ( 1 ... B ) ) ) |