Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p3.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
2 |
|
aks4d1p3.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
3 |
|
aks4d1p3.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
4 |
1 2 3
|
aks4d1p1 |
|- ( ph -> A < ( 2 ^ B ) ) |
5 |
4
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> A < ( 2 ^ B ) ) |
6 |
|
2re |
|- 2 e. RR |
7 |
6
|
a1i |
|- ( ph -> 2 e. RR ) |
8 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
9 |
|
2pos |
|- 0 < 2 |
10 |
9
|
a1i |
|- ( ph -> 0 < 2 ) |
11 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
12 |
1 11
|
syl |
|- ( ph -> N e. ZZ ) |
13 |
12
|
zred |
|- ( ph -> N e. RR ) |
14 |
|
0red |
|- ( ph -> 0 e. RR ) |
15 |
|
3re |
|- 3 e. RR |
16 |
15
|
a1i |
|- ( ph -> 3 e. RR ) |
17 |
|
3pos |
|- 0 < 3 |
18 |
17
|
a1i |
|- ( ph -> 0 < 3 ) |
19 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
20 |
1 19
|
syl |
|- ( ph -> 3 <_ N ) |
21 |
14 16 13 18 20
|
ltletrd |
|- ( ph -> 0 < N ) |
22 |
|
1red |
|- ( ph -> 1 e. RR ) |
23 |
|
1lt2 |
|- 1 < 2 |
24 |
23
|
a1i |
|- ( ph -> 1 < 2 ) |
25 |
22 24
|
ltned |
|- ( ph -> 1 =/= 2 ) |
26 |
25
|
necomd |
|- ( ph -> 2 =/= 1 ) |
27 |
7 10 13 21 26
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
28 |
|
5nn0 |
|- 5 e. NN0 |
29 |
28
|
a1i |
|- ( ph -> 5 e. NN0 ) |
30 |
27 29
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
31 |
|
ceilcl |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
32 |
30 31
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
33 |
8 32
|
eqeltrd |
|- ( ph -> B e. ZZ ) |
34 |
32
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. RR ) |
35 |
8 34
|
eqeltrd |
|- ( ph -> B e. RR ) |
36 |
|
7re |
|- 7 e. RR |
37 |
36
|
a1i |
|- ( ph -> 7 e. RR ) |
38 |
|
7pos |
|- 0 < 7 |
39 |
38
|
a1i |
|- ( ph -> 0 < 7 ) |
40 |
13 20
|
3lexlogpow5ineq3 |
|- ( ph -> 7 < ( ( 2 logb N ) ^ 5 ) ) |
41 |
14 37 30 39 40
|
lttrd |
|- ( ph -> 0 < ( ( 2 logb N ) ^ 5 ) ) |
42 |
|
ceilge |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
43 |
30 42
|
syl |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
44 |
14 30 34 41 43
|
ltletrd |
|- ( ph -> 0 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
45 |
44 8
|
breqtrrd |
|- ( ph -> 0 < B ) |
46 |
14 35 45
|
ltled |
|- ( ph -> 0 <_ B ) |
47 |
33 46
|
jca |
|- ( ph -> ( B e. ZZ /\ 0 <_ B ) ) |
48 |
|
elnn0z |
|- ( B e. NN0 <-> ( B e. ZZ /\ 0 <_ B ) ) |
49 |
47 48
|
sylibr |
|- ( ph -> B e. NN0 ) |
50 |
7 49
|
reexpcld |
|- ( ph -> ( 2 ^ B ) e. RR ) |
51 |
50
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( 2 ^ B ) e. RR ) |
52 |
|
elfznn |
|- ( q e. ( 1 ... B ) -> q e. NN ) |
53 |
52
|
adantl |
|- ( ( ph /\ q e. ( 1 ... B ) ) -> q e. NN ) |
54 |
53
|
nnzd |
|- ( ( ph /\ q e. ( 1 ... B ) ) -> q e. ZZ ) |
55 |
54
|
ex |
|- ( ph -> ( q e. ( 1 ... B ) -> q e. ZZ ) ) |
56 |
55
|
ssrdv |
|- ( ph -> ( 1 ... B ) C_ ZZ ) |
57 |
|
fzfid |
|- ( ph -> ( 1 ... B ) e. Fin ) |
58 |
|
lcmfcl |
|- ( ( ( 1 ... B ) C_ ZZ /\ ( 1 ... B ) e. Fin ) -> ( _lcm ` ( 1 ... B ) ) e. NN0 ) |
59 |
56 57 58
|
syl2anc |
|- ( ph -> ( _lcm ` ( 1 ... B ) ) e. NN0 ) |
60 |
59
|
nn0red |
|- ( ph -> ( _lcm ` ( 1 ... B ) ) e. RR ) |
61 |
60
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( _lcm ` ( 1 ... B ) ) e. RR ) |
62 |
2
|
a1i |
|- ( ph -> A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) |
63 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
64 |
12 21 63
|
sylanbrc |
|- ( ph -> N e. NN ) |
65 |
7 10 35 45 26
|
relogbcld |
|- ( ph -> ( 2 logb B ) e. RR ) |
66 |
65
|
flcld |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. ZZ ) |
67 |
7 10 7 10 26
|
relogbcld |
|- ( ph -> ( 2 logb 2 ) e. RR ) |
68 |
|
0le1 |
|- 0 <_ 1 |
69 |
68
|
a1i |
|- ( ph -> 0 <_ 1 ) |
70 |
7
|
recnd |
|- ( ph -> 2 e. CC ) |
71 |
14 10
|
gtned |
|- ( ph -> 2 =/= 0 ) |
72 |
|
logbid1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 2 ) = 1 ) |
73 |
70 71 26 72
|
syl3anc |
|- ( ph -> ( 2 logb 2 ) = 1 ) |
74 |
73
|
eqcomd |
|- ( ph -> 1 = ( 2 logb 2 ) ) |
75 |
69 74
|
breqtrd |
|- ( ph -> 0 <_ ( 2 logb 2 ) ) |
76 |
|
2z |
|- 2 e. ZZ |
77 |
76
|
a1i |
|- ( ph -> 2 e. ZZ ) |
78 |
7
|
leidd |
|- ( ph -> 2 <_ 2 ) |
79 |
|
2lt7 |
|- 2 < 7 |
80 |
79
|
a1i |
|- ( ph -> 2 < 7 ) |
81 |
7 37 80
|
ltled |
|- ( ph -> 2 <_ 7 ) |
82 |
37 30 34 40 43
|
ltletrd |
|- ( ph -> 7 < ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
83 |
82 8
|
breqtrrd |
|- ( ph -> 7 < B ) |
84 |
37 35 83
|
ltled |
|- ( ph -> 7 <_ B ) |
85 |
7 37 35 81 84
|
letrd |
|- ( ph -> 2 <_ B ) |
86 |
77 78 7 10 35 45 85
|
logblebd |
|- ( ph -> ( 2 logb 2 ) <_ ( 2 logb B ) ) |
87 |
14 67 65 75 86
|
letrd |
|- ( ph -> 0 <_ ( 2 logb B ) ) |
88 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
89 |
|
flge |
|- ( ( ( 2 logb B ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( 2 logb B ) <-> 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
90 |
65 88 89
|
syl2anc |
|- ( ph -> ( 0 <_ ( 2 logb B ) <-> 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
91 |
87 90
|
mpbid |
|- ( ph -> 0 <_ ( |_ ` ( 2 logb B ) ) ) |
92 |
66 91
|
jca |
|- ( ph -> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
93 |
|
elnn0z |
|- ( ( |_ ` ( 2 logb B ) ) e. NN0 <-> ( ( |_ ` ( 2 logb B ) ) e. ZZ /\ 0 <_ ( |_ ` ( 2 logb B ) ) ) ) |
94 |
92 93
|
sylibr |
|- ( ph -> ( |_ ` ( 2 logb B ) ) e. NN0 ) |
95 |
64 94
|
nnexpcld |
|- ( ph -> ( N ^ ( |_ ` ( 2 logb B ) ) ) e. NN ) |
96 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) e. Fin ) |
97 |
12
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> N e. ZZ ) |
98 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) -> k e. NN ) |
99 |
98
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. NN ) |
100 |
99
|
nnnn0d |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. NN0 ) |
101 |
|
zexpcl |
|- ( ( N e. ZZ /\ k e. NN0 ) -> ( N ^ k ) e. ZZ ) |
102 |
97 100 101
|
syl2anc |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( N ^ k ) e. ZZ ) |
103 |
|
1zzd |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 e. ZZ ) |
104 |
102 103
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( ( N ^ k ) - 1 ) e. ZZ ) |
105 |
|
1cnd |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 e. CC ) |
106 |
105
|
addid1d |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( 1 + 0 ) = 1 ) |
107 |
22
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 e. RR ) |
108 |
|
1nn0 |
|- 1 e. NN0 |
109 |
108
|
a1i |
|- ( ph -> 1 e. NN0 ) |
110 |
13 109
|
reexpcld |
|- ( ph -> ( N ^ 1 ) e. RR ) |
111 |
110
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( N ^ 1 ) e. RR ) |
112 |
102
|
zred |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( N ^ k ) e. RR ) |
113 |
|
1lt3 |
|- 1 < 3 |
114 |
113
|
a1i |
|- ( ph -> 1 < 3 ) |
115 |
22 16 13 114 20
|
ltletrd |
|- ( ph -> 1 < N ) |
116 |
13
|
recnd |
|- ( ph -> N e. CC ) |
117 |
116
|
exp1d |
|- ( ph -> ( N ^ 1 ) = N ) |
118 |
117
|
eqcomd |
|- ( ph -> N = ( N ^ 1 ) ) |
119 |
115 118
|
breqtrd |
|- ( ph -> 1 < ( N ^ 1 ) ) |
120 |
119
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 < ( N ^ 1 ) ) |
121 |
13
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> N e. RR ) |
122 |
64
|
nnge1d |
|- ( ph -> 1 <_ N ) |
123 |
122
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 <_ N ) |
124 |
|
elfzuz |
|- ( k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) -> k e. ( ZZ>= ` 1 ) ) |
125 |
124
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> k e. ( ZZ>= ` 1 ) ) |
126 |
121 123 125
|
leexp2ad |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( N ^ 1 ) <_ ( N ^ k ) ) |
127 |
107 111 112 120 126
|
ltletrd |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 1 < ( N ^ k ) ) |
128 |
106 127
|
eqbrtrd |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( 1 + 0 ) < ( N ^ k ) ) |
129 |
14
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 0 e. RR ) |
130 |
107 129 112
|
ltaddsub2d |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( ( 1 + 0 ) < ( N ^ k ) <-> 0 < ( ( N ^ k ) - 1 ) ) ) |
131 |
128 130
|
mpbid |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> 0 < ( ( N ^ k ) - 1 ) ) |
132 |
104 131
|
jca |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( ( ( N ^ k ) - 1 ) e. ZZ /\ 0 < ( ( N ^ k ) - 1 ) ) ) |
133 |
|
elnnz |
|- ( ( ( N ^ k ) - 1 ) e. NN <-> ( ( ( N ^ k ) - 1 ) e. ZZ /\ 0 < ( ( N ^ k ) - 1 ) ) ) |
134 |
132 133
|
sylibr |
|- ( ( ph /\ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) -> ( ( N ^ k ) - 1 ) e. NN ) |
135 |
96 134
|
fprodnncl |
|- ( ph -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) e. NN ) |
136 |
95 135
|
nnmulcld |
|- ( ph -> ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) e. NN ) |
137 |
62 136
|
eqeltrd |
|- ( ph -> A e. NN ) |
138 |
137
|
nnred |
|- ( ph -> A e. RR ) |
139 |
138
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> A e. RR ) |
140 |
1 2 3
|
aks4d1p2 |
|- ( ph -> ( 2 ^ B ) <_ ( _lcm ` ( 1 ... B ) ) ) |
141 |
140
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( 2 ^ B ) <_ ( _lcm ` ( 1 ... B ) ) ) |
142 |
137
|
nnzd |
|- ( ph -> A e. ZZ ) |
143 |
142
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> A e. ZZ ) |
144 |
56
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( 1 ... B ) C_ ZZ ) |
145 |
|
fzfid |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( 1 ... B ) e. Fin ) |
146 |
|
lcmfdvdsb |
|- ( ( A e. ZZ /\ ( 1 ... B ) C_ ZZ /\ ( 1 ... B ) e. Fin ) -> ( A. r e. ( 1 ... B ) r || A <-> ( _lcm ` ( 1 ... B ) ) || A ) ) |
147 |
143 144 145 146
|
syl3anc |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( A. r e. ( 1 ... B ) r || A <-> ( _lcm ` ( 1 ... B ) ) || A ) ) |
148 |
147
|
biimpd |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( A. r e. ( 1 ... B ) r || A -> ( _lcm ` ( 1 ... B ) ) || A ) ) |
149 |
148
|
syldbl2 |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( _lcm ` ( 1 ... B ) ) || A ) |
150 |
59
|
nn0zd |
|- ( ph -> ( _lcm ` ( 1 ... B ) ) e. ZZ ) |
151 |
150
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( _lcm ` ( 1 ... B ) ) e. ZZ ) |
152 |
137
|
adantr |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> A e. NN ) |
153 |
|
dvdsle |
|- ( ( ( _lcm ` ( 1 ... B ) ) e. ZZ /\ A e. NN ) -> ( ( _lcm ` ( 1 ... B ) ) || A -> ( _lcm ` ( 1 ... B ) ) <_ A ) ) |
154 |
151 152 153
|
syl2anc |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( ( _lcm ` ( 1 ... B ) ) || A -> ( _lcm ` ( 1 ... B ) ) <_ A ) ) |
155 |
149 154
|
mpd |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( _lcm ` ( 1 ... B ) ) <_ A ) |
156 |
51 61 139 141 155
|
letrd |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( 2 ^ B ) <_ A ) |
157 |
51 139
|
lenltd |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> ( ( 2 ^ B ) <_ A <-> -. A < ( 2 ^ B ) ) ) |
158 |
156 157
|
mpbid |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> -. A < ( 2 ^ B ) ) |
159 |
5 158
|
pm2.21dd |
|- ( ( ph /\ A. r e. ( 1 ... B ) r || A ) -> -. A. r e. ( 1 ... B ) r || A ) |
160 |
|
simpr |
|- ( ( ph /\ -. A. r e. ( 1 ... B ) r || A ) -> -. A. r e. ( 1 ... B ) r || A ) |
161 |
159 160
|
pm2.61dan |
|- ( ph -> -. A. r e. ( 1 ... B ) r || A ) |
162 |
|
rexnal |
|- ( E. r e. ( 1 ... B ) -. r || A <-> -. A. r e. ( 1 ... B ) r || A ) |
163 |
161 162
|
sylibr |
|- ( ph -> E. r e. ( 1 ... B ) -. r || A ) |