| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p1.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1p1.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 3 |
|
aks4d1p1.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 4 |
|
3nn |
|- 3 e. NN |
| 5 |
4
|
a1i |
|- ( ( ph /\ 3 < N ) -> 3 e. NN ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ 3 < N ) -> N e. ( ZZ>= ` 3 ) ) |
| 7 |
|
eluznn |
|- ( ( 3 e. NN /\ N e. ( ZZ>= ` 3 ) ) -> N e. NN ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( ph /\ 3 < N ) -> N e. NN ) |
| 9 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 10 |
|
simpr |
|- ( ( ph /\ 3 < N ) -> 3 < N ) |
| 11 |
|
3z |
|- 3 e. ZZ |
| 12 |
11
|
a1i |
|- ( ( ph /\ 3 < N ) -> 3 e. ZZ ) |
| 13 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 14 |
1 13
|
syl |
|- ( ph -> N e. ZZ ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ 3 < N ) -> N e. ZZ ) |
| 16 |
12 15
|
zltp1led |
|- ( ( ph /\ 3 < N ) -> ( 3 < N <-> ( 3 + 1 ) <_ N ) ) |
| 17 |
10 16
|
mpbid |
|- ( ( ph /\ 3 < N ) -> ( 3 + 1 ) <_ N ) |
| 18 |
9 17
|
eqbrtrrid |
|- ( ( ph /\ 3 < N ) -> 4 <_ N ) |
| 19 |
|
eqid |
|- ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) = ( 2 logb ( ( ( 2 logb N ) ^ 5 ) + 1 ) ) |
| 20 |
|
eqid |
|- ( ( 2 logb N ) ^ 2 ) = ( ( 2 logb N ) ^ 2 ) |
| 21 |
|
eqid |
|- ( ( 2 logb N ) ^ 4 ) = ( ( 2 logb N ) ^ 4 ) |
| 22 |
8 2 3 18 19 20 21
|
aks4d1p1p5 |
|- ( ( ph /\ 3 < N ) -> A < ( 2 ^ B ) ) |
| 23 |
22
|
ex |
|- ( ph -> ( 3 < N -> A < ( 2 ^ B ) ) ) |
| 24 |
|
simp2 |
|- ( ( ph /\ 3 = N /\ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ) -> 3 = N ) |
| 25 |
24
|
eqcomd |
|- ( ( ph /\ 3 = N /\ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ) -> N = 3 ) |
| 26 |
25
|
oveq1d |
|- ( ( ph /\ 3 = N /\ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ) -> ( N ^ k ) = ( 3 ^ k ) ) |
| 27 |
26
|
oveq1d |
|- ( ( ph /\ 3 = N /\ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ) -> ( ( N ^ k ) - 1 ) = ( ( 3 ^ k ) - 1 ) ) |
| 28 |
27
|
3expa |
|- ( ( ( ph /\ 3 = N ) /\ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ) -> ( ( N ^ k ) - 1 ) = ( ( 3 ^ k ) - 1 ) ) |
| 29 |
28
|
prodeq2dv |
|- ( ( ph /\ 3 = N ) -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) = prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) ) |
| 30 |
29
|
oveq2d |
|- ( ( ph /\ 3 = N ) -> ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) = ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) ) ) |
| 31 |
|
2rp |
|- 2 e. RR+ |
| 32 |
31
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 33 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 34 |
|
1lt2 |
|- 1 < 2 |
| 35 |
34
|
a1i |
|- ( ph -> 1 < 2 ) |
| 36 |
33 35
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 37 |
36
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 38 |
11
|
a1i |
|- ( ph -> 3 e. ZZ ) |
| 39 |
32 37 38
|
relogbexpd |
|- ( ph -> ( 2 logb ( 2 ^ 3 ) ) = 3 ) |
| 40 |
39
|
eqcomd |
|- ( ph -> 3 = ( 2 logb ( 2 ^ 3 ) ) ) |
| 41 |
|
cu2 |
|- ( 2 ^ 3 ) = 8 |
| 42 |
41
|
a1i |
|- ( ph -> ( 2 ^ 3 ) = 8 ) |
| 43 |
42
|
oveq2d |
|- ( ph -> ( 2 logb ( 2 ^ 3 ) ) = ( 2 logb 8 ) ) |
| 44 |
40 43
|
eqtrd |
|- ( ph -> 3 = ( 2 logb 8 ) ) |
| 45 |
|
2z |
|- 2 e. ZZ |
| 46 |
45
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 47 |
46
|
zred |
|- ( ph -> 2 e. RR ) |
| 48 |
47
|
leidd |
|- ( ph -> 2 <_ 2 ) |
| 49 |
|
8re |
|- 8 e. RR |
| 50 |
49
|
a1i |
|- ( ph -> 8 e. RR ) |
| 51 |
|
8pos |
|- 0 < 8 |
| 52 |
51
|
a1i |
|- ( ph -> 0 < 8 ) |
| 53 |
32
|
rpgt0d |
|- ( ph -> 0 < 2 ) |
| 54 |
|
3re |
|- 3 e. RR |
| 55 |
54
|
a1i |
|- ( ph -> 3 e. RR ) |
| 56 |
4
|
nngt0i |
|- 0 < 3 |
| 57 |
56
|
a1i |
|- ( ph -> 0 < 3 ) |
| 58 |
47 53 55 57 37
|
relogbcld |
|- ( ph -> ( 2 logb 3 ) e. RR ) |
| 59 |
|
5nn0 |
|- 5 e. NN0 |
| 60 |
59
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 61 |
58 60
|
reexpcld |
|- ( ph -> ( ( 2 logb 3 ) ^ 5 ) e. RR ) |
| 62 |
|
ceilcl |
|- ( ( ( 2 logb 3 ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. ZZ ) |
| 63 |
61 62
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. ZZ ) |
| 64 |
63
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. RR ) |
| 65 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 66 |
|
9re |
|- 9 e. RR |
| 67 |
66
|
a1i |
|- ( ph -> 9 e. RR ) |
| 68 |
50
|
lep1d |
|- ( ph -> 8 <_ ( 8 + 1 ) ) |
| 69 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
| 70 |
69
|
a1i |
|- ( ph -> ( 8 + 1 ) = 9 ) |
| 71 |
68 70
|
breqtrd |
|- ( ph -> 8 <_ 9 ) |
| 72 |
|
2re |
|- 2 e. RR |
| 73 |
72
|
a1i |
|- ( ph -> 2 e. RR ) |
| 74 |
|
2pos |
|- 0 < 2 |
| 75 |
74
|
a1i |
|- ( ph -> 0 < 2 ) |
| 76 |
|
3pos |
|- 0 < 3 |
| 77 |
76
|
a1i |
|- ( ph -> 0 < 3 ) |
| 78 |
73 75 55 77 37
|
relogbcld |
|- ( ph -> ( 2 logb 3 ) e. RR ) |
| 79 |
78 60
|
reexpcld |
|- ( ph -> ( ( 2 logb 3 ) ^ 5 ) e. RR ) |
| 80 |
79 62
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. ZZ ) |
| 81 |
80
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. RR ) |
| 82 |
55
|
leidd |
|- ( ph -> 3 <_ 3 ) |
| 83 |
55 82
|
3lexlogpow5ineq4 |
|- ( ph -> 9 < ( ( 2 logb 3 ) ^ 5 ) ) |
| 84 |
67 79 83
|
ltled |
|- ( ph -> 9 <_ ( ( 2 logb 3 ) ^ 5 ) ) |
| 85 |
|
ceilge |
|- ( ( ( 2 logb 3 ) ^ 5 ) e. RR -> ( ( 2 logb 3 ) ^ 5 ) <_ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) |
| 86 |
79 85
|
syl |
|- ( ph -> ( ( 2 logb 3 ) ^ 5 ) <_ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) |
| 87 |
67 79 81 84 86
|
letrd |
|- ( ph -> 9 <_ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) |
| 88 |
50 67 64 71 87
|
letrd |
|- ( ph -> 8 <_ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) |
| 89 |
65 50 64 52 88
|
ltletrd |
|- ( ph -> 0 < ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) |
| 90 |
46 48 50 52 64 89 88
|
logblebd |
|- ( ph -> ( 2 logb 8 ) <_ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 91 |
44 90
|
eqbrtrd |
|- ( ph -> 3 <_ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 92 |
79 33
|
readdcld |
|- ( ph -> ( ( ( 2 logb 3 ) ^ 5 ) + 1 ) e. RR ) |
| 93 |
|
1nn0 |
|- 1 e. NN0 |
| 94 |
|
6nn |
|- 6 e. NN |
| 95 |
93 94
|
decnncl |
|- ; 1 6 e. NN |
| 96 |
95
|
a1i |
|- ( ph -> ; 1 6 e. NN ) |
| 97 |
96
|
nnred |
|- ( ph -> ; 1 6 e. RR ) |
| 98 |
|
ceilm1lt |
|- ( ( ( 2 logb 3 ) ^ 5 ) e. RR -> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) - 1 ) < ( ( 2 logb 3 ) ^ 5 ) ) |
| 99 |
79 98
|
syl |
|- ( ph -> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) - 1 ) < ( ( 2 logb 3 ) ^ 5 ) ) |
| 100 |
81 33 79
|
ltsubaddd |
|- ( ph -> ( ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) - 1 ) < ( ( 2 logb 3 ) ^ 5 ) <-> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) < ( ( ( 2 logb 3 ) ^ 5 ) + 1 ) ) ) |
| 101 |
99 100
|
mpbid |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) < ( ( ( 2 logb 3 ) ^ 5 ) + 1 ) ) |
| 102 |
|
3lexlogpow5ineq5 |
|- ( ( 2 logb 3 ) ^ 5 ) <_ ; 1 5 |
| 103 |
102
|
a1i |
|- ( ph -> ( ( 2 logb 3 ) ^ 5 ) <_ ; 1 5 ) |
| 104 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
| 105 |
|
eqid |
|- ; 1 5 = ; 1 5 |
| 106 |
93 59 104 105
|
decsuc |
|- ( ; 1 5 + 1 ) = ; 1 6 |
| 107 |
106
|
a1i |
|- ( ph -> ( ; 1 5 + 1 ) = ; 1 6 ) |
| 108 |
97
|
recnd |
|- ( ph -> ; 1 6 e. CC ) |
| 109 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 110 |
|
5nn |
|- 5 e. NN |
| 111 |
93 110
|
decnncl |
|- ; 1 5 e. NN |
| 112 |
111
|
a1i |
|- ( ph -> ; 1 5 e. NN ) |
| 113 |
112
|
nncnd |
|- ( ph -> ; 1 5 e. CC ) |
| 114 |
108 109 113
|
subadd2d |
|- ( ph -> ( ( ; 1 6 - 1 ) = ; 1 5 <-> ( ; 1 5 + 1 ) = ; 1 6 ) ) |
| 115 |
107 114
|
mpbird |
|- ( ph -> ( ; 1 6 - 1 ) = ; 1 5 ) |
| 116 |
115
|
eqcomd |
|- ( ph -> ; 1 5 = ( ; 1 6 - 1 ) ) |
| 117 |
103 116
|
breqtrd |
|- ( ph -> ( ( 2 logb 3 ) ^ 5 ) <_ ( ; 1 6 - 1 ) ) |
| 118 |
|
leaddsub |
|- ( ( ( ( 2 logb 3 ) ^ 5 ) e. RR /\ 1 e. RR /\ ; 1 6 e. RR ) -> ( ( ( ( 2 logb 3 ) ^ 5 ) + 1 ) <_ ; 1 6 <-> ( ( 2 logb 3 ) ^ 5 ) <_ ( ; 1 6 - 1 ) ) ) |
| 119 |
79 33 97 118
|
syl3anc |
|- ( ph -> ( ( ( ( 2 logb 3 ) ^ 5 ) + 1 ) <_ ; 1 6 <-> ( ( 2 logb 3 ) ^ 5 ) <_ ( ; 1 6 - 1 ) ) ) |
| 120 |
117 119
|
mpbird |
|- ( ph -> ( ( ( 2 logb 3 ) ^ 5 ) + 1 ) <_ ; 1 6 ) |
| 121 |
81 92 97 101 120
|
ltletrd |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) < ; 1 6 ) |
| 122 |
|
eqid |
|- ; 1 6 = ; 1 6 |
| 123 |
|
2exp4 |
|- ( 2 ^ 4 ) = ; 1 6 |
| 124 |
122 123
|
eqtr4i |
|- ; 1 6 = ( 2 ^ 4 ) |
| 125 |
124
|
a1i |
|- ( ph -> ; 1 6 = ( 2 ^ 4 ) ) |
| 126 |
121 125
|
breqtrd |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) < ( 2 ^ 4 ) ) |
| 127 |
46
|
uzidd |
|- ( ph -> 2 e. ( ZZ>= ` 2 ) ) |
| 128 |
64 89
|
elrpd |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. RR+ ) |
| 129 |
|
4z |
|- 4 e. ZZ |
| 130 |
129
|
a1i |
|- ( ph -> 4 e. ZZ ) |
| 131 |
32 130
|
rpexpcld |
|- ( ph -> ( 2 ^ 4 ) e. RR+ ) |
| 132 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. RR+ /\ ( 2 ^ 4 ) e. RR+ ) -> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) < ( 2 ^ 4 ) <-> ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 2 logb ( 2 ^ 4 ) ) ) ) |
| 133 |
127 128 131 132
|
syl3anc |
|- ( ph -> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) < ( 2 ^ 4 ) <-> ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 2 logb ( 2 ^ 4 ) ) ) ) |
| 134 |
126 133
|
mpbid |
|- ( ph -> ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 2 logb ( 2 ^ 4 ) ) ) |
| 135 |
32 37 130
|
relogbexpd |
|- ( ph -> ( 2 logb ( 2 ^ 4 ) ) = 4 ) |
| 136 |
9
|
eqcomi |
|- 4 = ( 3 + 1 ) |
| 137 |
136
|
a1i |
|- ( ph -> 4 = ( 3 + 1 ) ) |
| 138 |
135 137
|
eqtrd |
|- ( ph -> ( 2 logb ( 2 ^ 4 ) ) = ( 3 + 1 ) ) |
| 139 |
134 138
|
breqtrd |
|- ( ph -> ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 3 + 1 ) ) |
| 140 |
91 139
|
jca |
|- ( ph -> ( 3 <_ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) /\ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 3 + 1 ) ) ) |
| 141 |
73 75 55 57 37
|
relogbcld |
|- ( ph -> ( 2 logb 3 ) e. RR ) |
| 142 |
141 60
|
reexpcld |
|- ( ph -> ( ( 2 logb 3 ) ^ 5 ) e. RR ) |
| 143 |
142 62
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. ZZ ) |
| 144 |
143
|
zred |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. RR ) |
| 145 |
|
9pos |
|- 0 < 9 |
| 146 |
145
|
a1i |
|- ( ph -> 0 < 9 ) |
| 147 |
65 67 144 146 87
|
ltletrd |
|- ( ph -> 0 < ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) |
| 148 |
73 75 144 147 37
|
relogbcld |
|- ( ph -> ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) e. RR ) |
| 149 |
|
flbi |
|- ( ( ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) e. RR /\ 3 e. ZZ ) -> ( ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) = 3 <-> ( 3 <_ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) /\ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 3 + 1 ) ) ) ) |
| 150 |
148 38 149
|
syl2anc |
|- ( ph -> ( ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) = 3 <-> ( 3 <_ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) /\ ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) < ( 3 + 1 ) ) ) ) |
| 151 |
140 150
|
mpbird |
|- ( ph -> ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) = 3 ) |
| 152 |
151
|
oveq2d |
|- ( ph -> ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) = ( 3 ^ 3 ) ) |
| 153 |
78
|
resqcld |
|- ( ph -> ( ( 2 logb 3 ) ^ 2 ) e. RR ) |
| 154 |
|
3lexlogpow2ineq2 |
|- ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 ) |
| 155 |
154
|
a1i |
|- ( ph -> ( 2 < ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < 3 ) ) |
| 156 |
155
|
simpld |
|- ( ph -> 2 < ( ( 2 logb 3 ) ^ 2 ) ) |
| 157 |
73 153 156
|
ltled |
|- ( ph -> 2 <_ ( ( 2 logb 3 ) ^ 2 ) ) |
| 158 |
155
|
simprd |
|- ( ph -> ( ( 2 logb 3 ) ^ 2 ) < 3 ) |
| 159 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 160 |
159
|
a1i |
|- ( ph -> 3 = ( 2 + 1 ) ) |
| 161 |
158 160
|
breqtrd |
|- ( ph -> ( ( 2 logb 3 ) ^ 2 ) < ( 2 + 1 ) ) |
| 162 |
157 161
|
jca |
|- ( ph -> ( 2 <_ ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < ( 2 + 1 ) ) ) |
| 163 |
141
|
resqcld |
|- ( ph -> ( ( 2 logb 3 ) ^ 2 ) e. RR ) |
| 164 |
|
flbi |
|- ( ( ( ( 2 logb 3 ) ^ 2 ) e. RR /\ 2 e. ZZ ) -> ( ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) = 2 <-> ( 2 <_ ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < ( 2 + 1 ) ) ) ) |
| 165 |
163 46 164
|
syl2anc |
|- ( ph -> ( ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) = 2 <-> ( 2 <_ ( ( 2 logb 3 ) ^ 2 ) /\ ( ( 2 logb 3 ) ^ 2 ) < ( 2 + 1 ) ) ) ) |
| 166 |
162 165
|
mpbird |
|- ( ph -> ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) = 2 ) |
| 167 |
166
|
oveq2d |
|- ( ph -> ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) = ( 1 ... 2 ) ) |
| 168 |
167
|
prodeq1d |
|- ( ph -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) = prod_ k e. ( 1 ... 2 ) ( ( 3 ^ k ) - 1 ) ) |
| 169 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 170 |
169 46
|
jca |
|- ( ph -> ( 1 e. ZZ /\ 2 e. ZZ ) ) |
| 171 |
|
1le2 |
|- 1 <_ 2 |
| 172 |
171
|
a1i |
|- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> 1 <_ 2 ) |
| 173 |
|
eluz |
|- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> ( 2 e. ( ZZ>= ` 1 ) <-> 1 <_ 2 ) ) |
| 174 |
172 173
|
mpbird |
|- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> 2 e. ( ZZ>= ` 1 ) ) |
| 175 |
170 174
|
syl |
|- ( ph -> 2 e. ( ZZ>= ` 1 ) ) |
| 176 |
|
3cn |
|- 3 e. CC |
| 177 |
176
|
a1i |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> 3 e. CC ) |
| 178 |
|
elfznn |
|- ( k e. ( 1 ... 2 ) -> k e. NN ) |
| 179 |
178
|
adantl |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> k e. NN ) |
| 180 |
179
|
nnnn0d |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> k e. NN0 ) |
| 181 |
177 180
|
expcld |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> ( 3 ^ k ) e. CC ) |
| 182 |
|
1cnd |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> 1 e. CC ) |
| 183 |
181 182
|
subcld |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> ( ( 3 ^ k ) - 1 ) e. CC ) |
| 184 |
|
oveq2 |
|- ( k = 2 -> ( 3 ^ k ) = ( 3 ^ 2 ) ) |
| 185 |
184
|
oveq1d |
|- ( k = 2 -> ( ( 3 ^ k ) - 1 ) = ( ( 3 ^ 2 ) - 1 ) ) |
| 186 |
175 183 185
|
fprodm1 |
|- ( ph -> prod_ k e. ( 1 ... 2 ) ( ( 3 ^ k ) - 1 ) = ( prod_ k e. ( 1 ... ( 2 - 1 ) ) ( ( 3 ^ k ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) |
| 187 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 188 |
187
|
a1i |
|- ( ph -> ( 2 - 1 ) = 1 ) |
| 189 |
188
|
oveq2d |
|- ( ph -> ( 1 ... ( 2 - 1 ) ) = ( 1 ... 1 ) ) |
| 190 |
189
|
prodeq1d |
|- ( ph -> prod_ k e. ( 1 ... ( 2 - 1 ) ) ( ( 3 ^ k ) - 1 ) = prod_ k e. ( 1 ... 1 ) ( ( 3 ^ k ) - 1 ) ) |
| 191 |
55
|
recnd |
|- ( ph -> 3 e. CC ) |
| 192 |
93
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 193 |
191 192
|
expcld |
|- ( ph -> ( 3 ^ 1 ) e. CC ) |
| 194 |
193 109
|
subcld |
|- ( ph -> ( ( 3 ^ 1 ) - 1 ) e. CC ) |
| 195 |
169 194
|
jca |
|- ( ph -> ( 1 e. ZZ /\ ( ( 3 ^ 1 ) - 1 ) e. CC ) ) |
| 196 |
|
oveq2 |
|- ( k = 1 -> ( 3 ^ k ) = ( 3 ^ 1 ) ) |
| 197 |
196
|
oveq1d |
|- ( k = 1 -> ( ( 3 ^ k ) - 1 ) = ( ( 3 ^ 1 ) - 1 ) ) |
| 198 |
197
|
fprod1 |
|- ( ( 1 e. ZZ /\ ( ( 3 ^ 1 ) - 1 ) e. CC ) -> prod_ k e. ( 1 ... 1 ) ( ( 3 ^ k ) - 1 ) = ( ( 3 ^ 1 ) - 1 ) ) |
| 199 |
195 198
|
syl |
|- ( ph -> prod_ k e. ( 1 ... 1 ) ( ( 3 ^ k ) - 1 ) = ( ( 3 ^ 1 ) - 1 ) ) |
| 200 |
190 199
|
eqtrd |
|- ( ph -> prod_ k e. ( 1 ... ( 2 - 1 ) ) ( ( 3 ^ k ) - 1 ) = ( ( 3 ^ 1 ) - 1 ) ) |
| 201 |
200
|
oveq1d |
|- ( ph -> ( prod_ k e. ( 1 ... ( 2 - 1 ) ) ( ( 3 ^ k ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) = ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) |
| 202 |
186 201
|
eqtrd |
|- ( ph -> prod_ k e. ( 1 ... 2 ) ( ( 3 ^ k ) - 1 ) = ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) |
| 203 |
168 202
|
eqtrd |
|- ( ph -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) = ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) |
| 204 |
152 203
|
oveq12d |
|- ( ph -> ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) ) = ( ( 3 ^ 3 ) x. ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) ) |
| 205 |
|
3nn0 |
|- 3 e. NN0 |
| 206 |
205
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 207 |
55 206
|
reexpcld |
|- ( ph -> ( 3 ^ 3 ) e. RR ) |
| 208 |
55 192
|
reexpcld |
|- ( ph -> ( 3 ^ 1 ) e. RR ) |
| 209 |
208 33
|
resubcld |
|- ( ph -> ( ( 3 ^ 1 ) - 1 ) e. RR ) |
| 210 |
55
|
resqcld |
|- ( ph -> ( 3 ^ 2 ) e. RR ) |
| 211 |
210 33
|
resubcld |
|- ( ph -> ( ( 3 ^ 2 ) - 1 ) e. RR ) |
| 212 |
209 211
|
remulcld |
|- ( ph -> ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) e. RR ) |
| 213 |
207 212
|
remulcld |
|- ( ph -> ( ( 3 ^ 3 ) x. ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) e. RR ) |
| 214 |
|
9nn0 |
|- 9 e. NN0 |
| 215 |
214
|
a1i |
|- ( ph -> 9 e. NN0 ) |
| 216 |
73 215
|
reexpcld |
|- ( ph -> ( 2 ^ 9 ) e. RR ) |
| 217 |
216 33
|
resubcld |
|- ( ph -> ( ( 2 ^ 9 ) - 1 ) e. RR ) |
| 218 |
|
elnnz |
|- ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN <-> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. ZZ /\ 0 < ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 219 |
143 147 218
|
sylanbrc |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN ) |
| 220 |
219
|
orcd |
|- ( ph -> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN \/ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) = 0 ) ) |
| 221 |
|
elnn0 |
|- ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN0 <-> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN \/ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) = 0 ) ) |
| 222 |
221
|
a1i |
|- ( ph -> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN0 <-> ( ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN \/ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) = 0 ) ) ) |
| 223 |
220 222
|
mpbird |
|- ( ph -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) e. NN0 ) |
| 224 |
73 223
|
reexpcld |
|- ( ph -> ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) e. RR ) |
| 225 |
|
8cn |
|- 8 e. CC |
| 226 |
|
2cn |
|- 2 e. CC |
| 227 |
|
8t2e16 |
|- ( 8 x. 2 ) = ; 1 6 |
| 228 |
225 226 227
|
mulcomli |
|- ( 2 x. 8 ) = ; 1 6 |
| 229 |
228
|
a1i |
|- ( ph -> ( 2 x. 8 ) = ; 1 6 ) |
| 230 |
229
|
oveq2d |
|- ( ph -> ( ; 2 7 x. ( 2 x. 8 ) ) = ( ; 2 7 x. ; 1 6 ) ) |
| 231 |
|
6nn0 |
|- 6 e. NN0 |
| 232 |
93 231
|
deccl |
|- ; 1 6 e. NN0 |
| 233 |
|
2nn0 |
|- 2 e. NN0 |
| 234 |
|
7nn0 |
|- 7 e. NN0 |
| 235 |
|
eqid |
|- ; 2 7 = ; 2 7 |
| 236 |
93 93
|
deccl |
|- ; 1 1 e. NN0 |
| 237 |
|
0nn0 |
|- 0 e. NN0 |
| 238 |
233
|
dec0h |
|- 2 = ; 0 2 |
| 239 |
|
eqid |
|- ; 1 1 = ; 1 1 |
| 240 |
232
|
nn0cni |
|- ; 1 6 e. CC |
| 241 |
240
|
mul02i |
|- ( 0 x. ; 1 6 ) = 0 |
| 242 |
|
ax-1cn |
|- 1 e. CC |
| 243 |
176 242 9
|
addcomli |
|- ( 1 + 3 ) = 4 |
| 244 |
241 243
|
oveq12i |
|- ( ( 0 x. ; 1 6 ) + ( 1 + 3 ) ) = ( 0 + 4 ) |
| 245 |
|
4cn |
|- 4 e. CC |
| 246 |
245
|
addlidi |
|- ( 0 + 4 ) = 4 |
| 247 |
244 246
|
eqtri |
|- ( ( 0 x. ; 1 6 ) + ( 1 + 3 ) ) = 4 |
| 248 |
93
|
dec0h |
|- 1 = ; 0 1 |
| 249 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 250 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 251 |
249 250
|
oveq12i |
|- ( ( 2 x. 1 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
| 252 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 253 |
251 252
|
eqtri |
|- ( ( 2 x. 1 ) + ( 0 + 1 ) ) = 3 |
| 254 |
|
6cn |
|- 6 e. CC |
| 255 |
|
6t2e12 |
|- ( 6 x. 2 ) = ; 1 2 |
| 256 |
254 226 255
|
mulcomli |
|- ( 2 x. 6 ) = ; 1 2 |
| 257 |
93 233 252 256
|
decsuc |
|- ( ( 2 x. 6 ) + 1 ) = ; 1 3 |
| 258 |
93 231 237 93 122 248 233 205 93 253 257
|
decma2c |
|- ( ( 2 x. ; 1 6 ) + 1 ) = ; 3 3 |
| 259 |
237 233 93 93 238 239 232 205 205 247 258
|
decmac |
|- ( ( 2 x. ; 1 6 ) + ; 1 1 ) = ; 4 3 |
| 260 |
|
4nn0 |
|- 4 e. NN0 |
| 261 |
|
7cn |
|- 7 e. CC |
| 262 |
261
|
mulridi |
|- ( 7 x. 1 ) = 7 |
| 263 |
262
|
oveq1i |
|- ( ( 7 x. 1 ) + 4 ) = ( 7 + 4 ) |
| 264 |
|
7p4e11 |
|- ( 7 + 4 ) = ; 1 1 |
| 265 |
263 264
|
eqtri |
|- ( ( 7 x. 1 ) + 4 ) = ; 1 1 |
| 266 |
|
7t6e42 |
|- ( 7 x. 6 ) = ; 4 2 |
| 267 |
234 93 231 122 233 260 265 266
|
decmul2c |
|- ( 7 x. ; 1 6 ) = ; ; 1 1 2 |
| 268 |
232 233 234 235 233 236 259 267
|
decmul1c |
|- ( ; 2 7 x. ; 1 6 ) = ; ; 4 3 2 |
| 269 |
268
|
a1i |
|- ( ph -> ( ; 2 7 x. ; 1 6 ) = ; ; 4 3 2 ) |
| 270 |
230 269
|
eqtrd |
|- ( ph -> ( ; 2 7 x. ( 2 x. 8 ) ) = ; ; 4 3 2 ) |
| 271 |
260 205
|
deccl |
|- ; 4 3 e. NN0 |
| 272 |
59 93
|
deccl |
|- ; 5 1 e. NN0 |
| 273 |
|
2lt10 |
|- 2 < ; 1 0 |
| 274 |
|
3lt10 |
|- 3 < ; 1 0 |
| 275 |
|
4lt5 |
|- 4 < 5 |
| 276 |
260 59 205 93 274 275
|
decltc |
|- ; 4 3 < ; 5 1 |
| 277 |
271 272 233 93 273 276
|
decltc |
|- ; ; 4 3 2 < ; ; 5 1 1 |
| 278 |
277
|
a1i |
|- ( ph -> ; ; 4 3 2 < ; ; 5 1 1 ) |
| 279 |
270 278
|
eqbrtrd |
|- ( ph -> ( ; 2 7 x. ( 2 x. 8 ) ) < ; ; 5 1 1 ) |
| 280 |
|
3exp3 |
|- ( 3 ^ 3 ) = ; 2 7 |
| 281 |
280
|
a1i |
|- ( ph -> ( 3 ^ 3 ) = ; 2 7 ) |
| 282 |
281
|
eqcomd |
|- ( ph -> ; 2 7 = ( 3 ^ 3 ) ) |
| 283 |
191
|
exp1d |
|- ( ph -> ( 3 ^ 1 ) = 3 ) |
| 284 |
283
|
oveq1d |
|- ( ph -> ( ( 3 ^ 1 ) - 1 ) = ( 3 - 1 ) ) |
| 285 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 286 |
285
|
a1i |
|- ( ph -> ( 3 - 1 ) = 2 ) |
| 287 |
284 286
|
eqtr2d |
|- ( ph -> 2 = ( ( 3 ^ 1 ) - 1 ) ) |
| 288 |
|
sq3 |
|- ( 3 ^ 2 ) = 9 |
| 289 |
288
|
a1i |
|- ( ph -> ( 3 ^ 2 ) = 9 ) |
| 290 |
289
|
oveq1d |
|- ( ph -> ( ( 3 ^ 2 ) - 1 ) = ( 9 - 1 ) ) |
| 291 |
|
9m1e8 |
|- ( 9 - 1 ) = 8 |
| 292 |
291
|
a1i |
|- ( ph -> ( 9 - 1 ) = 8 ) |
| 293 |
290 292
|
eqtr2d |
|- ( ph -> 8 = ( ( 3 ^ 2 ) - 1 ) ) |
| 294 |
287 293
|
oveq12d |
|- ( ph -> ( 2 x. 8 ) = ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) |
| 295 |
282 294
|
oveq12d |
|- ( ph -> ( ; 2 7 x. ( 2 x. 8 ) ) = ( ( 3 ^ 3 ) x. ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) ) |
| 296 |
|
df-9 |
|- 9 = ( 8 + 1 ) |
| 297 |
296
|
a1i |
|- ( ph -> 9 = ( 8 + 1 ) ) |
| 298 |
297
|
oveq2d |
|- ( ph -> ( 2 ^ 9 ) = ( 2 ^ ( 8 + 1 ) ) ) |
| 299 |
287 194
|
eqeltrd |
|- ( ph -> 2 e. CC ) |
| 300 |
|
8nn0 |
|- 8 e. NN0 |
| 301 |
300
|
a1i |
|- ( ph -> 8 e. NN0 ) |
| 302 |
299 192 301
|
expaddd |
|- ( ph -> ( 2 ^ ( 8 + 1 ) ) = ( ( 2 ^ 8 ) x. ( 2 ^ 1 ) ) ) |
| 303 |
298 302
|
eqtrd |
|- ( ph -> ( 2 ^ 9 ) = ( ( 2 ^ 8 ) x. ( 2 ^ 1 ) ) ) |
| 304 |
|
2exp8 |
|- ( 2 ^ 8 ) = ; ; 2 5 6 |
| 305 |
304
|
a1i |
|- ( ph -> ( 2 ^ 8 ) = ; ; 2 5 6 ) |
| 306 |
305
|
oveq1d |
|- ( ph -> ( ( 2 ^ 8 ) x. ( 2 ^ 1 ) ) = ( ; ; 2 5 6 x. ( 2 ^ 1 ) ) ) |
| 307 |
299
|
exp1d |
|- ( ph -> ( 2 ^ 1 ) = 2 ) |
| 308 |
307
|
oveq2d |
|- ( ph -> ( ; ; 2 5 6 x. ( 2 ^ 1 ) ) = ( ; ; 2 5 6 x. 2 ) ) |
| 309 |
306 308
|
eqtrd |
|- ( ph -> ( ( 2 ^ 8 ) x. ( 2 ^ 1 ) ) = ( ; ; 2 5 6 x. 2 ) ) |
| 310 |
233 59
|
deccl |
|- ; 2 5 e. NN0 |
| 311 |
|
eqid |
|- ; ; 2 5 6 = ; ; 2 5 6 |
| 312 |
|
eqid |
|- ; 2 5 = ; 2 5 |
| 313 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 314 |
313 250
|
oveq12i |
|- ( ( 2 x. 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 315 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
| 316 |
314 315
|
eqtri |
|- ( ( 2 x. 2 ) + ( 0 + 1 ) ) = 5 |
| 317 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 318 |
93 237 250 317
|
decsuc |
|- ( ( 5 x. 2 ) + 1 ) = ; 1 1 |
| 319 |
233 59 237 93 312 248 233 93 93 316 318
|
decmac |
|- ( ( ; 2 5 x. 2 ) + 1 ) = ; 5 1 |
| 320 |
233 310 231 311 233 93 319 255
|
decmul1c |
|- ( ; ; 2 5 6 x. 2 ) = ; ; 5 1 2 |
| 321 |
320
|
a1i |
|- ( ph -> ( ; ; 2 5 6 x. 2 ) = ; ; 5 1 2 ) |
| 322 |
309 321
|
eqtrd |
|- ( ph -> ( ( 2 ^ 8 ) x. ( 2 ^ 1 ) ) = ; ; 5 1 2 ) |
| 323 |
303 322
|
eqtrd |
|- ( ph -> ( 2 ^ 9 ) = ; ; 5 1 2 ) |
| 324 |
323
|
oveq1d |
|- ( ph -> ( ( 2 ^ 9 ) - 1 ) = ( ; ; 5 1 2 - 1 ) ) |
| 325 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 326 |
|
eqid |
|- ; ; 5 1 1 = ; ; 5 1 1 |
| 327 |
272 93 325 326
|
decsuc |
|- ( ; ; 5 1 1 + 1 ) = ; ; 5 1 2 |
| 328 |
272 233
|
deccl |
|- ; ; 5 1 2 e. NN0 |
| 329 |
328
|
nn0cni |
|- ; ; 5 1 2 e. CC |
| 330 |
272 93
|
deccl |
|- ; ; 5 1 1 e. NN0 |
| 331 |
330
|
nn0cni |
|- ; ; 5 1 1 e. CC |
| 332 |
329 242 331
|
subadd2i |
|- ( ( ; ; 5 1 2 - 1 ) = ; ; 5 1 1 <-> ( ; ; 5 1 1 + 1 ) = ; ; 5 1 2 ) |
| 333 |
327 332
|
mpbir |
|- ( ; ; 5 1 2 - 1 ) = ; ; 5 1 1 |
| 334 |
333
|
a1i |
|- ( ph -> ( ; ; 5 1 2 - 1 ) = ; ; 5 1 1 ) |
| 335 |
324 334
|
eqtr2d |
|- ( ph -> ; ; 5 1 1 = ( ( 2 ^ 9 ) - 1 ) ) |
| 336 |
279 295 335
|
3brtr3d |
|- ( ph -> ( ( 3 ^ 3 ) x. ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) < ( ( 2 ^ 9 ) - 1 ) ) |
| 337 |
216
|
ltm1d |
|- ( ph -> ( ( 2 ^ 9 ) - 1 ) < ( 2 ^ 9 ) ) |
| 338 |
215
|
nn0zd |
|- ( ph -> 9 e. ZZ ) |
| 339 |
73 338 143 35
|
leexp2d |
|- ( ph -> ( 9 <_ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) <-> ( 2 ^ 9 ) <_ ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) |
| 340 |
87 339
|
mpbid |
|- ( ph -> ( 2 ^ 9 ) <_ ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 341 |
217 216 224 337 340
|
ltletrd |
|- ( ph -> ( ( 2 ^ 9 ) - 1 ) < ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 342 |
213 217 224 336 341
|
lttrd |
|- ( ph -> ( ( 3 ^ 3 ) x. ( ( ( 3 ^ 1 ) - 1 ) x. ( ( 3 ^ 2 ) - 1 ) ) ) < ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 343 |
204 342
|
eqbrtrd |
|- ( ph -> ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) ) < ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 344 |
343
|
adantr |
|- ( ( ph /\ 3 = N ) -> ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( 3 ^ k ) - 1 ) ) < ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 345 |
30 344
|
eqbrtrd |
|- ( ( ph /\ 3 = N ) -> ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) < ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) |
| 346 |
|
simpr |
|- ( ( ph /\ 3 = N ) -> 3 = N ) |
| 347 |
|
oveq2 |
|- ( 3 = N -> ( 2 logb 3 ) = ( 2 logb N ) ) |
| 348 |
347
|
adantl |
|- ( ( ph /\ 3 = N ) -> ( 2 logb 3 ) = ( 2 logb N ) ) |
| 349 |
348
|
oveq1d |
|- ( ( ph /\ 3 = N ) -> ( ( 2 logb 3 ) ^ 5 ) = ( ( 2 logb N ) ^ 5 ) ) |
| 350 |
349
|
fveq2d |
|- ( ( ph /\ 3 = N ) -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 351 |
3
|
a1i |
|- ( ( ph /\ 3 = N ) -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 352 |
351
|
eqcomd |
|- ( ( ph /\ 3 = N ) -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) = B ) |
| 353 |
350 352
|
eqtrd |
|- ( ( ph /\ 3 = N ) -> ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) = B ) |
| 354 |
353
|
oveq2d |
|- ( ( ph /\ 3 = N ) -> ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) = ( 2 logb B ) ) |
| 355 |
354
|
fveq2d |
|- ( ( ph /\ 3 = N ) -> ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) = ( |_ ` ( 2 logb B ) ) ) |
| 356 |
346 355
|
oveq12d |
|- ( ( ph /\ 3 = N ) -> ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) = ( N ^ ( |_ ` ( 2 logb B ) ) ) ) |
| 357 |
346
|
oveq2d |
|- ( ( ph /\ 3 = N ) -> ( 2 logb 3 ) = ( 2 logb N ) ) |
| 358 |
357
|
oveq1d |
|- ( ( ph /\ 3 = N ) -> ( ( 2 logb 3 ) ^ 2 ) = ( ( 2 logb N ) ^ 2 ) ) |
| 359 |
358
|
fveq2d |
|- ( ( ph /\ 3 = N ) -> ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) = ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) |
| 360 |
359
|
oveq2d |
|- ( ( ph /\ 3 = N ) -> ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) = ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ) |
| 361 |
360
|
prodeq1d |
|- ( ( ph /\ 3 = N ) -> prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) = prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 362 |
356 361
|
oveq12d |
|- ( ( ph /\ 3 = N ) -> ( ( 3 ^ ( |_ ` ( 2 logb ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb 3 ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) |
| 363 |
350
|
oveq2d |
|- ( ( ph /\ 3 = N ) -> ( 2 ^ ( |^ ` ( ( 2 logb 3 ) ^ 5 ) ) ) = ( 2 ^ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) ) |
| 364 |
345 362 363
|
3brtr3d |
|- ( ( ph /\ 3 = N ) -> ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) < ( 2 ^ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) ) |
| 365 |
2
|
a1i |
|- ( ( ph /\ 3 = N ) -> A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) ) |
| 366 |
365
|
eqcomd |
|- ( ( ph /\ 3 = N ) -> ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) = A ) |
| 367 |
3
|
oveq2i |
|- ( 2 ^ B ) = ( 2 ^ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 368 |
367
|
a1i |
|- ( ( ph /\ 3 = N ) -> ( 2 ^ B ) = ( 2 ^ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) ) |
| 369 |
368
|
eqcomd |
|- ( ( ph /\ 3 = N ) -> ( 2 ^ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) = ( 2 ^ B ) ) |
| 370 |
364 366 369
|
3brtr3d |
|- ( ( ph /\ 3 = N ) -> A < ( 2 ^ B ) ) |
| 371 |
370
|
ex |
|- ( ph -> ( 3 = N -> A < ( 2 ^ B ) ) ) |
| 372 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 373 |
1 372
|
syl |
|- ( ph -> 3 <_ N ) |
| 374 |
14
|
zred |
|- ( ph -> N e. RR ) |
| 375 |
55 374
|
leloed |
|- ( ph -> ( 3 <_ N <-> ( 3 < N \/ 3 = N ) ) ) |
| 376 |
373 375
|
mpbid |
|- ( ph -> ( 3 < N \/ 3 = N ) ) |
| 377 |
23 371 376
|
mpjaod |
|- ( ph -> A < ( 2 ^ B ) ) |