Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
2 |
|
aks4d1p1.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
3 |
|
aks4d1p1.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
4 |
|
3nn |
⊢ 3 ∈ ℕ |
5 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 3 ∈ ℕ ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
7 |
|
eluznn |
⊢ ( ( 3 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑁 ∈ ℕ ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 𝑁 ∈ ℕ ) |
9 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 3 < 𝑁 ) |
11 |
|
3z |
⊢ 3 ∈ ℤ |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 3 ∈ ℤ ) |
13 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 𝑁 ∈ ℤ ) |
16 |
12 15
|
zltp1led |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → ( 3 < 𝑁 ↔ ( 3 + 1 ) ≤ 𝑁 ) ) |
17 |
10 16
|
mpbid |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → ( 3 + 1 ) ≤ 𝑁 ) |
18 |
9 17
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 4 ≤ 𝑁 ) |
19 |
|
eqid |
⊢ ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) = ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) |
20 |
|
eqid |
⊢ ( ( 2 logb 𝑁 ) ↑ 2 ) = ( ( 2 logb 𝑁 ) ↑ 2 ) |
21 |
|
eqid |
⊢ ( ( 2 logb 𝑁 ) ↑ 4 ) = ( ( 2 logb 𝑁 ) ↑ 4 ) |
22 |
8 2 3 18 19 20 21
|
aks4d1p1p5 |
⊢ ( ( 𝜑 ∧ 3 < 𝑁 ) → 𝐴 < ( 2 ↑ 𝐵 ) ) |
23 |
22
|
ex |
⊢ ( 𝜑 → ( 3 < 𝑁 → 𝐴 < ( 2 ↑ 𝐵 ) ) ) |
24 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ) → 3 = 𝑁 ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ) → 𝑁 = 3 ) |
26 |
25
|
oveq1d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) = ( 3 ↑ 𝑘 ) ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 𝑘 ) − 1 ) ) |
28 |
27
|
3expa |
⊢ ( ( ( 𝜑 ∧ 3 = 𝑁 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 𝑘 ) − 1 ) ) |
29 |
28
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) = ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) = ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) ) ) |
31 |
|
2rp |
⊢ 2 ∈ ℝ+ |
32 |
31
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
33 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
34 |
|
1lt2 |
⊢ 1 < 2 |
35 |
34
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
36 |
33 35
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
37 |
36
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
38 |
11
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℤ ) |
39 |
32 37 38
|
relogbexpd |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 3 ) ) = 3 ) |
40 |
39
|
eqcomd |
⊢ ( 𝜑 → 3 = ( 2 logb ( 2 ↑ 3 ) ) ) |
41 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 3 ) = 8 ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 3 ) ) = ( 2 logb 8 ) ) |
44 |
40 43
|
eqtrd |
⊢ ( 𝜑 → 3 = ( 2 logb 8 ) ) |
45 |
|
2z |
⊢ 2 ∈ ℤ |
46 |
45
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
47 |
46
|
zred |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
48 |
47
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
49 |
|
8re |
⊢ 8 ∈ ℝ |
50 |
49
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℝ ) |
51 |
|
8pos |
⊢ 0 < 8 |
52 |
51
|
a1i |
⊢ ( 𝜑 → 0 < 8 ) |
53 |
32
|
rpgt0d |
⊢ ( 𝜑 → 0 < 2 ) |
54 |
|
3re |
⊢ 3 ∈ ℝ |
55 |
54
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
56 |
4
|
nngt0i |
⊢ 0 < 3 |
57 |
56
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
58 |
47 53 55 57 37
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 3 ) ∈ ℝ ) |
59 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
60 |
59
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
61 |
58 60
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ ) |
62 |
|
ceilcl |
⊢ ( ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℤ ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℤ ) |
64 |
63
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℝ ) |
65 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
66 |
|
9re |
⊢ 9 ∈ ℝ |
67 |
66
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
68 |
50
|
lep1d |
⊢ ( 𝜑 → 8 ≤ ( 8 + 1 ) ) |
69 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
70 |
69
|
a1i |
⊢ ( 𝜑 → ( 8 + 1 ) = 9 ) |
71 |
68 70
|
breqtrd |
⊢ ( 𝜑 → 8 ≤ 9 ) |
72 |
|
2re |
⊢ 2 ∈ ℝ |
73 |
72
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
74 |
|
2pos |
⊢ 0 < 2 |
75 |
74
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
76 |
|
3pos |
⊢ 0 < 3 |
77 |
76
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
78 |
73 75 55 77 37
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 3 ) ∈ ℝ ) |
79 |
78 60
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ ) |
80 |
79 62
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℤ ) |
81 |
80
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℝ ) |
82 |
55
|
leidd |
⊢ ( 𝜑 → 3 ≤ 3 ) |
83 |
55 82
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 3 ) ↑ 5 ) ) |
84 |
67 79 83
|
ltled |
⊢ ( 𝜑 → 9 ≤ ( ( 2 logb 3 ) ↑ 5 ) ) |
85 |
|
ceilge |
⊢ ( ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 3 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) |
86 |
79 85
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) |
87 |
67 79 81 84 86
|
letrd |
⊢ ( 𝜑 → 9 ≤ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) |
88 |
50 67 64 71 87
|
letrd |
⊢ ( 𝜑 → 8 ≤ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) |
89 |
65 50 64 52 88
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) |
90 |
46 48 50 52 64 89 88
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 8 ) ≤ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
91 |
44 90
|
eqbrtrd |
⊢ ( 𝜑 → 3 ≤ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
92 |
79 33
|
readdcld |
⊢ ( 𝜑 → ( ( ( 2 logb 3 ) ↑ 5 ) + 1 ) ∈ ℝ ) |
93 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
94 |
|
6nn |
⊢ 6 ∈ ℕ |
95 |
93 94
|
decnncl |
⊢ ; 1 6 ∈ ℕ |
96 |
95
|
a1i |
⊢ ( 𝜑 → ; 1 6 ∈ ℕ ) |
97 |
96
|
nnred |
⊢ ( 𝜑 → ; 1 6 ∈ ℝ ) |
98 |
|
ceilm1lt |
⊢ ( ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ → ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) − 1 ) < ( ( 2 logb 3 ) ↑ 5 ) ) |
99 |
79 98
|
syl |
⊢ ( 𝜑 → ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) − 1 ) < ( ( 2 logb 3 ) ↑ 5 ) ) |
100 |
81 33 79
|
ltsubaddd |
⊢ ( 𝜑 → ( ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) − 1 ) < ( ( 2 logb 3 ) ↑ 5 ) ↔ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) < ( ( ( 2 logb 3 ) ↑ 5 ) + 1 ) ) ) |
101 |
99 100
|
mpbid |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) < ( ( ( 2 logb 3 ) ↑ 5 ) + 1 ) ) |
102 |
|
3lexlogpow5ineq5 |
⊢ ( ( 2 logb 3 ) ↑ 5 ) ≤ ; 1 5 |
103 |
102
|
a1i |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 5 ) ≤ ; 1 5 ) |
104 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
105 |
|
eqid |
⊢ ; 1 5 = ; 1 5 |
106 |
93 59 104 105
|
decsuc |
⊢ ( ; 1 5 + 1 ) = ; 1 6 |
107 |
106
|
a1i |
⊢ ( 𝜑 → ( ; 1 5 + 1 ) = ; 1 6 ) |
108 |
97
|
recnd |
⊢ ( 𝜑 → ; 1 6 ∈ ℂ ) |
109 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
110 |
|
5nn |
⊢ 5 ∈ ℕ |
111 |
93 110
|
decnncl |
⊢ ; 1 5 ∈ ℕ |
112 |
111
|
a1i |
⊢ ( 𝜑 → ; 1 5 ∈ ℕ ) |
113 |
112
|
nncnd |
⊢ ( 𝜑 → ; 1 5 ∈ ℂ ) |
114 |
108 109 113
|
subadd2d |
⊢ ( 𝜑 → ( ( ; 1 6 − 1 ) = ; 1 5 ↔ ( ; 1 5 + 1 ) = ; 1 6 ) ) |
115 |
107 114
|
mpbird |
⊢ ( 𝜑 → ( ; 1 6 − 1 ) = ; 1 5 ) |
116 |
115
|
eqcomd |
⊢ ( 𝜑 → ; 1 5 = ( ; 1 6 − 1 ) ) |
117 |
103 116
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 5 ) ≤ ( ; 1 6 − 1 ) ) |
118 |
|
leaddsub |
⊢ ( ( ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ; 1 6 ∈ ℝ ) → ( ( ( ( 2 logb 3 ) ↑ 5 ) + 1 ) ≤ ; 1 6 ↔ ( ( 2 logb 3 ) ↑ 5 ) ≤ ( ; 1 6 − 1 ) ) ) |
119 |
79 33 97 118
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 2 logb 3 ) ↑ 5 ) + 1 ) ≤ ; 1 6 ↔ ( ( 2 logb 3 ) ↑ 5 ) ≤ ( ; 1 6 − 1 ) ) ) |
120 |
117 119
|
mpbird |
⊢ ( 𝜑 → ( ( ( 2 logb 3 ) ↑ 5 ) + 1 ) ≤ ; 1 6 ) |
121 |
81 92 97 101 120
|
ltletrd |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) < ; 1 6 ) |
122 |
|
eqid |
⊢ ; 1 6 = ; 1 6 |
123 |
|
2exp4 |
⊢ ( 2 ↑ 4 ) = ; 1 6 |
124 |
122 123
|
eqtr4i |
⊢ ; 1 6 = ( 2 ↑ 4 ) |
125 |
124
|
a1i |
⊢ ( 𝜑 → ; 1 6 = ( 2 ↑ 4 ) ) |
126 |
121 125
|
breqtrd |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) < ( 2 ↑ 4 ) ) |
127 |
46
|
uzidd |
⊢ ( 𝜑 → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
128 |
64 89
|
elrpd |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℝ+ ) |
129 |
|
4z |
⊢ 4 ∈ ℤ |
130 |
129
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℤ ) |
131 |
32 130
|
rpexpcld |
⊢ ( 𝜑 → ( 2 ↑ 4 ) ∈ ℝ+ ) |
132 |
|
logblt |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℝ+ ∧ ( 2 ↑ 4 ) ∈ ℝ+ ) → ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) < ( 2 ↑ 4 ) ↔ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 2 logb ( 2 ↑ 4 ) ) ) ) |
133 |
127 128 131 132
|
syl3anc |
⊢ ( 𝜑 → ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) < ( 2 ↑ 4 ) ↔ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 2 logb ( 2 ↑ 4 ) ) ) ) |
134 |
126 133
|
mpbid |
⊢ ( 𝜑 → ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 2 logb ( 2 ↑ 4 ) ) ) |
135 |
32 37 130
|
relogbexpd |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 4 ) ) = 4 ) |
136 |
9
|
eqcomi |
⊢ 4 = ( 3 + 1 ) |
137 |
136
|
a1i |
⊢ ( 𝜑 → 4 = ( 3 + 1 ) ) |
138 |
135 137
|
eqtrd |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 4 ) ) = ( 3 + 1 ) ) |
139 |
134 138
|
breqtrd |
⊢ ( 𝜑 → ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 3 + 1 ) ) |
140 |
91 139
|
jca |
⊢ ( 𝜑 → ( 3 ≤ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ∧ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 3 + 1 ) ) ) |
141 |
73 75 55 57 37
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 3 ) ∈ ℝ ) |
142 |
141 60
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 5 ) ∈ ℝ ) |
143 |
142 62
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℤ ) |
144 |
143
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℝ ) |
145 |
|
9pos |
⊢ 0 < 9 |
146 |
145
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
147 |
65 67 144 146 87
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) |
148 |
73 75 144 147 37
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ∈ ℝ ) |
149 |
|
flbi |
⊢ ( ( ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ∈ ℝ ∧ 3 ∈ ℤ ) → ( ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) = 3 ↔ ( 3 ≤ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ∧ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 3 + 1 ) ) ) ) |
150 |
148 38 149
|
syl2anc |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) = 3 ↔ ( 3 ≤ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ∧ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) < ( 3 + 1 ) ) ) ) |
151 |
140 150
|
mpbird |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) = 3 ) |
152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) = ( 3 ↑ 3 ) ) |
153 |
78
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 2 ) ∈ ℝ ) |
154 |
|
3lexlogpow2ineq2 |
⊢ ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 ) |
155 |
154
|
a1i |
⊢ ( 𝜑 → ( 2 < ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < 3 ) ) |
156 |
155
|
simpld |
⊢ ( 𝜑 → 2 < ( ( 2 logb 3 ) ↑ 2 ) ) |
157 |
73 153 156
|
ltled |
⊢ ( 𝜑 → 2 ≤ ( ( 2 logb 3 ) ↑ 2 ) ) |
158 |
155
|
simprd |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 2 ) < 3 ) |
159 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
160 |
159
|
a1i |
⊢ ( 𝜑 → 3 = ( 2 + 1 ) ) |
161 |
158 160
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 2 ) < ( 2 + 1 ) ) |
162 |
157 161
|
jca |
⊢ ( 𝜑 → ( 2 ≤ ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < ( 2 + 1 ) ) ) |
163 |
141
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 3 ) ↑ 2 ) ∈ ℝ ) |
164 |
|
flbi |
⊢ ( ( ( ( 2 logb 3 ) ↑ 2 ) ∈ ℝ ∧ 2 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) = 2 ↔ ( 2 ≤ ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < ( 2 + 1 ) ) ) ) |
165 |
163 46 164
|
syl2anc |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) = 2 ↔ ( 2 ≤ ( ( 2 logb 3 ) ↑ 2 ) ∧ ( ( 2 logb 3 ) ↑ 2 ) < ( 2 + 1 ) ) ) ) |
166 |
162 165
|
mpbird |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) = 2 ) |
167 |
166
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) = ( 1 ... 2 ) ) |
168 |
167
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) = ∏ 𝑘 ∈ ( 1 ... 2 ) ( ( 3 ↑ 𝑘 ) − 1 ) ) |
169 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
170 |
169 46
|
jca |
⊢ ( 𝜑 → ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ) |
171 |
|
1le2 |
⊢ 1 ≤ 2 |
172 |
171
|
a1i |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) → 1 ≤ 2 ) |
173 |
|
eluz |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 ∈ ( ℤ≥ ‘ 1 ) ↔ 1 ≤ 2 ) ) |
174 |
172 173
|
mpbird |
⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) → 2 ∈ ( ℤ≥ ‘ 1 ) ) |
175 |
170 174
|
syl |
⊢ ( 𝜑 → 2 ∈ ( ℤ≥ ‘ 1 ) ) |
176 |
|
3cn |
⊢ 3 ∈ ℂ |
177 |
176
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 3 ∈ ℂ ) |
178 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 2 ) → 𝑘 ∈ ℕ ) |
179 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℕ ) |
180 |
179
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℕ0 ) |
181 |
177 180
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 3 ↑ 𝑘 ) ∈ ℂ ) |
182 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 1 ∈ ℂ ) |
183 |
181 182
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( 3 ↑ 𝑘 ) − 1 ) ∈ ℂ ) |
184 |
|
oveq2 |
⊢ ( 𝑘 = 2 → ( 3 ↑ 𝑘 ) = ( 3 ↑ 2 ) ) |
185 |
184
|
oveq1d |
⊢ ( 𝑘 = 2 → ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 2 ) − 1 ) ) |
186 |
175 183 185
|
fprodm1 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 2 ) ( ( 3 ↑ 𝑘 ) − 1 ) = ( ∏ 𝑘 ∈ ( 1 ... ( 2 − 1 ) ) ( ( 3 ↑ 𝑘 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) |
187 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
188 |
187
|
a1i |
⊢ ( 𝜑 → ( 2 − 1 ) = 1 ) |
189 |
188
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( 2 − 1 ) ) = ( 1 ... 1 ) ) |
190 |
189
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( 2 − 1 ) ) ( ( 3 ↑ 𝑘 ) − 1 ) = ∏ 𝑘 ∈ ( 1 ... 1 ) ( ( 3 ↑ 𝑘 ) − 1 ) ) |
191 |
55
|
recnd |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
192 |
93
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
193 |
191 192
|
expcld |
⊢ ( 𝜑 → ( 3 ↑ 1 ) ∈ ℂ ) |
194 |
193 109
|
subcld |
⊢ ( 𝜑 → ( ( 3 ↑ 1 ) − 1 ) ∈ ℂ ) |
195 |
169 194
|
jca |
⊢ ( 𝜑 → ( 1 ∈ ℤ ∧ ( ( 3 ↑ 1 ) − 1 ) ∈ ℂ ) ) |
196 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 3 ↑ 𝑘 ) = ( 3 ↑ 1 ) ) |
197 |
196
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 1 ) − 1 ) ) |
198 |
197
|
fprod1 |
⊢ ( ( 1 ∈ ℤ ∧ ( ( 3 ↑ 1 ) − 1 ) ∈ ℂ ) → ∏ 𝑘 ∈ ( 1 ... 1 ) ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 1 ) − 1 ) ) |
199 |
195 198
|
syl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 1 ) ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 1 ) − 1 ) ) |
200 |
190 199
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( 2 − 1 ) ) ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( 3 ↑ 1 ) − 1 ) ) |
201 |
200
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 1 ... ( 2 − 1 ) ) ( ( 3 ↑ 𝑘 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) = ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) |
202 |
186 201
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... 2 ) ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) |
203 |
168 202
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) = ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) |
204 |
152 203
|
oveq12d |
⊢ ( 𝜑 → ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) ) = ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) ) |
205 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
206 |
205
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℕ0 ) |
207 |
55 206
|
reexpcld |
⊢ ( 𝜑 → ( 3 ↑ 3 ) ∈ ℝ ) |
208 |
55 192
|
reexpcld |
⊢ ( 𝜑 → ( 3 ↑ 1 ) ∈ ℝ ) |
209 |
208 33
|
resubcld |
⊢ ( 𝜑 → ( ( 3 ↑ 1 ) − 1 ) ∈ ℝ ) |
210 |
55
|
resqcld |
⊢ ( 𝜑 → ( 3 ↑ 2 ) ∈ ℝ ) |
211 |
210 33
|
resubcld |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) − 1 ) ∈ ℝ ) |
212 |
209 211
|
remulcld |
⊢ ( 𝜑 → ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ∈ ℝ ) |
213 |
207 212
|
remulcld |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) ∈ ℝ ) |
214 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
215 |
214
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℕ0 ) |
216 |
73 215
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ 9 ) ∈ ℝ ) |
217 |
216 33
|
resubcld |
⊢ ( 𝜑 → ( ( 2 ↑ 9 ) − 1 ) ∈ ℝ ) |
218 |
|
elnnz |
⊢ ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ ↔ ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℤ ∧ 0 < ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
219 |
143 147 218
|
sylanbrc |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ ) |
220 |
219
|
orcd |
⊢ ( 𝜑 → ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ ∨ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) = 0 ) ) |
221 |
|
elnn0 |
⊢ ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ0 ↔ ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ ∨ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) = 0 ) ) |
222 |
221
|
a1i |
⊢ ( 𝜑 → ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ0 ↔ ( ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ ∨ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) = 0 ) ) ) |
223 |
220 222
|
mpbird |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ∈ ℕ0 ) |
224 |
73 223
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ∈ ℝ ) |
225 |
|
8cn |
⊢ 8 ∈ ℂ |
226 |
|
2cn |
⊢ 2 ∈ ℂ |
227 |
|
8t2e16 |
⊢ ( 8 · 2 ) = ; 1 6 |
228 |
225 226 227
|
mulcomli |
⊢ ( 2 · 8 ) = ; 1 6 |
229 |
228
|
a1i |
⊢ ( 𝜑 → ( 2 · 8 ) = ; 1 6 ) |
230 |
229
|
oveq2d |
⊢ ( 𝜑 → ( ; 2 7 · ( 2 · 8 ) ) = ( ; 2 7 · ; 1 6 ) ) |
231 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
232 |
93 231
|
deccl |
⊢ ; 1 6 ∈ ℕ0 |
233 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
234 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
235 |
|
eqid |
⊢ ; 2 7 = ; 2 7 |
236 |
93 93
|
deccl |
⊢ ; 1 1 ∈ ℕ0 |
237 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
238 |
233
|
dec0h |
⊢ 2 = ; 0 2 |
239 |
|
eqid |
⊢ ; 1 1 = ; 1 1 |
240 |
232
|
nn0cni |
⊢ ; 1 6 ∈ ℂ |
241 |
240
|
mul02i |
⊢ ( 0 · ; 1 6 ) = 0 |
242 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
243 |
176 242 9
|
addcomli |
⊢ ( 1 + 3 ) = 4 |
244 |
241 243
|
oveq12i |
⊢ ( ( 0 · ; 1 6 ) + ( 1 + 3 ) ) = ( 0 + 4 ) |
245 |
|
4cn |
⊢ 4 ∈ ℂ |
246 |
245
|
addid2i |
⊢ ( 0 + 4 ) = 4 |
247 |
244 246
|
eqtri |
⊢ ( ( 0 · ; 1 6 ) + ( 1 + 3 ) ) = 4 |
248 |
93
|
dec0h |
⊢ 1 = ; 0 1 |
249 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
250 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
251 |
249 250
|
oveq12i |
⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
252 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
253 |
251 252
|
eqtri |
⊢ ( ( 2 · 1 ) + ( 0 + 1 ) ) = 3 |
254 |
|
6cn |
⊢ 6 ∈ ℂ |
255 |
|
6t2e12 |
⊢ ( 6 · 2 ) = ; 1 2 |
256 |
254 226 255
|
mulcomli |
⊢ ( 2 · 6 ) = ; 1 2 |
257 |
93 233 252 256
|
decsuc |
⊢ ( ( 2 · 6 ) + 1 ) = ; 1 3 |
258 |
93 231 237 93 122 248 233 205 93 253 257
|
decma2c |
⊢ ( ( 2 · ; 1 6 ) + 1 ) = ; 3 3 |
259 |
237 233 93 93 238 239 232 205 205 247 258
|
decmac |
⊢ ( ( 2 · ; 1 6 ) + ; 1 1 ) = ; 4 3 |
260 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
261 |
|
7cn |
⊢ 7 ∈ ℂ |
262 |
261
|
mulid1i |
⊢ ( 7 · 1 ) = 7 |
263 |
262
|
oveq1i |
⊢ ( ( 7 · 1 ) + 4 ) = ( 7 + 4 ) |
264 |
|
7p4e11 |
⊢ ( 7 + 4 ) = ; 1 1 |
265 |
263 264
|
eqtri |
⊢ ( ( 7 · 1 ) + 4 ) = ; 1 1 |
266 |
|
7t6e42 |
⊢ ( 7 · 6 ) = ; 4 2 |
267 |
234 93 231 122 233 260 265 266
|
decmul2c |
⊢ ( 7 · ; 1 6 ) = ; ; 1 1 2 |
268 |
232 233 234 235 233 236 259 267
|
decmul1c |
⊢ ( ; 2 7 · ; 1 6 ) = ; ; 4 3 2 |
269 |
268
|
a1i |
⊢ ( 𝜑 → ( ; 2 7 · ; 1 6 ) = ; ; 4 3 2 ) |
270 |
230 269
|
eqtrd |
⊢ ( 𝜑 → ( ; 2 7 · ( 2 · 8 ) ) = ; ; 4 3 2 ) |
271 |
260 205
|
deccl |
⊢ ; 4 3 ∈ ℕ0 |
272 |
59 93
|
deccl |
⊢ ; 5 1 ∈ ℕ0 |
273 |
|
2lt10 |
⊢ 2 < ; 1 0 |
274 |
|
3lt10 |
⊢ 3 < ; 1 0 |
275 |
|
4lt5 |
⊢ 4 < 5 |
276 |
260 59 205 93 274 275
|
decltc |
⊢ ; 4 3 < ; 5 1 |
277 |
271 272 233 93 273 276
|
decltc |
⊢ ; ; 4 3 2 < ; ; 5 1 1 |
278 |
277
|
a1i |
⊢ ( 𝜑 → ; ; 4 3 2 < ; ; 5 1 1 ) |
279 |
270 278
|
eqbrtrd |
⊢ ( 𝜑 → ( ; 2 7 · ( 2 · 8 ) ) < ; ; 5 1 1 ) |
280 |
|
3exp3 |
⊢ ( 3 ↑ 3 ) = ; 2 7 |
281 |
280
|
a1i |
⊢ ( 𝜑 → ( 3 ↑ 3 ) = ; 2 7 ) |
282 |
281
|
eqcomd |
⊢ ( 𝜑 → ; 2 7 = ( 3 ↑ 3 ) ) |
283 |
191
|
exp1d |
⊢ ( 𝜑 → ( 3 ↑ 1 ) = 3 ) |
284 |
283
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ 1 ) − 1 ) = ( 3 − 1 ) ) |
285 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
286 |
285
|
a1i |
⊢ ( 𝜑 → ( 3 − 1 ) = 2 ) |
287 |
284 286
|
eqtr2d |
⊢ ( 𝜑 → 2 = ( ( 3 ↑ 1 ) − 1 ) ) |
288 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
289 |
288
|
a1i |
⊢ ( 𝜑 → ( 3 ↑ 2 ) = 9 ) |
290 |
289
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 ↑ 2 ) − 1 ) = ( 9 − 1 ) ) |
291 |
|
9m1e8 |
⊢ ( 9 − 1 ) = 8 |
292 |
291
|
a1i |
⊢ ( 𝜑 → ( 9 − 1 ) = 8 ) |
293 |
290 292
|
eqtr2d |
⊢ ( 𝜑 → 8 = ( ( 3 ↑ 2 ) − 1 ) ) |
294 |
287 293
|
oveq12d |
⊢ ( 𝜑 → ( 2 · 8 ) = ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) |
295 |
282 294
|
oveq12d |
⊢ ( 𝜑 → ( ; 2 7 · ( 2 · 8 ) ) = ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) ) |
296 |
|
df-9 |
⊢ 9 = ( 8 + 1 ) |
297 |
296
|
a1i |
⊢ ( 𝜑 → 9 = ( 8 + 1 ) ) |
298 |
297
|
oveq2d |
⊢ ( 𝜑 → ( 2 ↑ 9 ) = ( 2 ↑ ( 8 + 1 ) ) ) |
299 |
287 194
|
eqeltrd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
300 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
301 |
300
|
a1i |
⊢ ( 𝜑 → 8 ∈ ℕ0 ) |
302 |
299 192 301
|
expaddd |
⊢ ( 𝜑 → ( 2 ↑ ( 8 + 1 ) ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 1 ) ) ) |
303 |
298 302
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ 9 ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 1 ) ) ) |
304 |
|
2exp8 |
⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 |
305 |
304
|
a1i |
⊢ ( 𝜑 → ( 2 ↑ 8 ) = ; ; 2 5 6 ) |
306 |
305
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 ↑ 8 ) · ( 2 ↑ 1 ) ) = ( ; ; 2 5 6 · ( 2 ↑ 1 ) ) ) |
307 |
299
|
exp1d |
⊢ ( 𝜑 → ( 2 ↑ 1 ) = 2 ) |
308 |
307
|
oveq2d |
⊢ ( 𝜑 → ( ; ; 2 5 6 · ( 2 ↑ 1 ) ) = ( ; ; 2 5 6 · 2 ) ) |
309 |
306 308
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 ↑ 8 ) · ( 2 ↑ 1 ) ) = ( ; ; 2 5 6 · 2 ) ) |
310 |
233 59
|
deccl |
⊢ ; 2 5 ∈ ℕ0 |
311 |
|
eqid |
⊢ ; ; 2 5 6 = ; ; 2 5 6 |
312 |
|
eqid |
⊢ ; 2 5 = ; 2 5 |
313 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
314 |
313 250
|
oveq12i |
⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
315 |
|
4p1e5 |
⊢ ( 4 + 1 ) = 5 |
316 |
314 315
|
eqtri |
⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
317 |
|
5t2e10 |
⊢ ( 5 · 2 ) = ; 1 0 |
318 |
93 237 250 317
|
decsuc |
⊢ ( ( 5 · 2 ) + 1 ) = ; 1 1 |
319 |
233 59 237 93 312 248 233 93 93 316 318
|
decmac |
⊢ ( ( ; 2 5 · 2 ) + 1 ) = ; 5 1 |
320 |
233 310 231 311 233 93 319 255
|
decmul1c |
⊢ ( ; ; 2 5 6 · 2 ) = ; ; 5 1 2 |
321 |
320
|
a1i |
⊢ ( 𝜑 → ( ; ; 2 5 6 · 2 ) = ; ; 5 1 2 ) |
322 |
309 321
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 ↑ 8 ) · ( 2 ↑ 1 ) ) = ; ; 5 1 2 ) |
323 |
303 322
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ 9 ) = ; ; 5 1 2 ) |
324 |
323
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 ↑ 9 ) − 1 ) = ( ; ; 5 1 2 − 1 ) ) |
325 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
326 |
|
eqid |
⊢ ; ; 5 1 1 = ; ; 5 1 1 |
327 |
272 93 325 326
|
decsuc |
⊢ ( ; ; 5 1 1 + 1 ) = ; ; 5 1 2 |
328 |
272 233
|
deccl |
⊢ ; ; 5 1 2 ∈ ℕ0 |
329 |
328
|
nn0cni |
⊢ ; ; 5 1 2 ∈ ℂ |
330 |
272 93
|
deccl |
⊢ ; ; 5 1 1 ∈ ℕ0 |
331 |
330
|
nn0cni |
⊢ ; ; 5 1 1 ∈ ℂ |
332 |
329 242 331
|
subadd2i |
⊢ ( ( ; ; 5 1 2 − 1 ) = ; ; 5 1 1 ↔ ( ; ; 5 1 1 + 1 ) = ; ; 5 1 2 ) |
333 |
327 332
|
mpbir |
⊢ ( ; ; 5 1 2 − 1 ) = ; ; 5 1 1 |
334 |
333
|
a1i |
⊢ ( 𝜑 → ( ; ; 5 1 2 − 1 ) = ; ; 5 1 1 ) |
335 |
324 334
|
eqtr2d |
⊢ ( 𝜑 → ; ; 5 1 1 = ( ( 2 ↑ 9 ) − 1 ) ) |
336 |
279 295 335
|
3brtr3d |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) < ( ( 2 ↑ 9 ) − 1 ) ) |
337 |
216
|
ltm1d |
⊢ ( 𝜑 → ( ( 2 ↑ 9 ) − 1 ) < ( 2 ↑ 9 ) ) |
338 |
215
|
nn0zd |
⊢ ( 𝜑 → 9 ∈ ℤ ) |
339 |
73 338 143 35
|
leexp2d |
⊢ ( 𝜑 → ( 9 ≤ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ↔ ( 2 ↑ 9 ) ≤ ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) |
340 |
87 339
|
mpbid |
⊢ ( 𝜑 → ( 2 ↑ 9 ) ≤ ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
341 |
217 216 224 337 340
|
ltletrd |
⊢ ( 𝜑 → ( ( 2 ↑ 9 ) − 1 ) < ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
342 |
213 217 224 336 341
|
lttrd |
⊢ ( 𝜑 → ( ( 3 ↑ 3 ) · ( ( ( 3 ↑ 1 ) − 1 ) · ( ( 3 ↑ 2 ) − 1 ) ) ) < ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
343 |
204 342
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) ) < ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
344 |
343
|
adantr |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 3 ↑ 𝑘 ) − 1 ) ) < ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
345 |
30 344
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) < ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) |
346 |
|
simpr |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → 3 = 𝑁 ) |
347 |
|
oveq2 |
⊢ ( 3 = 𝑁 → ( 2 logb 3 ) = ( 2 logb 𝑁 ) ) |
348 |
347
|
adantl |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 2 logb 3 ) = ( 2 logb 𝑁 ) ) |
349 |
348
|
oveq1d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 2 logb 3 ) ↑ 5 ) = ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
350 |
349
|
fveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
351 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
352 |
351
|
eqcomd |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) = 𝐵 ) |
353 |
350 352
|
eqtrd |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) = 𝐵 ) |
354 |
353
|
oveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) = ( 2 logb 𝐵 ) ) |
355 |
354
|
fveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) = ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
356 |
346 355
|
oveq12d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) = ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
357 |
346
|
oveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 2 logb 3 ) = ( 2 logb 𝑁 ) ) |
358 |
357
|
oveq1d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 2 logb 3 ) ↑ 2 ) = ( ( 2 logb 𝑁 ) ↑ 2 ) ) |
359 |
358
|
fveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) = ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) |
360 |
359
|
oveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) = ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) |
361 |
360
|
prodeq1d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) = ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
362 |
356 361
|
oveq12d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 3 ↑ ( ⌊ ‘ ( 2 logb ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 3 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
363 |
350
|
oveq2d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 3 ) ↑ 5 ) ) ) = ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) ) |
364 |
345 362 363
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) < ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) ) |
365 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
366 |
365
|
eqcomd |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) = 𝐴 ) |
367 |
3
|
oveq2i |
⊢ ( 2 ↑ 𝐵 ) = ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
368 |
367
|
a1i |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 2 ↑ 𝐵 ) = ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) ) |
369 |
368
|
eqcomd |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → ( 2 ↑ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) = ( 2 ↑ 𝐵 ) ) |
370 |
364 366 369
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 3 = 𝑁 ) → 𝐴 < ( 2 ↑ 𝐵 ) ) |
371 |
370
|
ex |
⊢ ( 𝜑 → ( 3 = 𝑁 → 𝐴 < ( 2 ↑ 𝐵 ) ) ) |
372 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
373 |
1 372
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
374 |
14
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
375 |
55 374
|
leloed |
⊢ ( 𝜑 → ( 3 ≤ 𝑁 ↔ ( 3 < 𝑁 ∨ 3 = 𝑁 ) ) ) |
376 |
373 375
|
mpbid |
⊢ ( 𝜑 → ( 3 < 𝑁 ∨ 3 = 𝑁 ) ) |
377 |
23 371 376
|
mpjaod |
⊢ ( 𝜑 → 𝐴 < ( 2 ↑ 𝐵 ) ) |