| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p2.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p2.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p2.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 5 |
|
2re |
⊢ 2 ∈ ℝ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 7 |
|
2pos |
⊢ 0 < 2 |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 9 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 11 |
10
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 12 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 13 |
|
3re |
⊢ 3 ∈ ℝ |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 15 |
|
3pos |
⊢ 0 < 3 |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 17 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 18 |
1 17
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 19 |
12 14 11 16 18
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 20 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 21 |
|
1lt2 |
⊢ 1 < 2 |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 23 |
20 22
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 24 |
23
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 25 |
6 8 11 19 24
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 26 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
| 28 |
25 27
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
| 29 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 31 |
4 30
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 32 |
30
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
| 33 |
|
7re |
⊢ 7 ∈ ℝ |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → 7 ∈ ℝ ) |
| 35 |
|
7pos |
⊢ 0 < 7 |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → 0 < 7 ) |
| 37 |
11 18
|
3lexlogpow5ineq3 |
⊢ ( 𝜑 → 7 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 38 |
12 34 28 36 37
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 39 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 40 |
28 39
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 41 |
12 28 32 38 40
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 42 |
41 4
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 43 |
31 42
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) ) |
| 44 |
|
elnnz |
⊢ ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) ) |
| 45 |
43 44
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 46 |
34 28 37
|
ltled |
⊢ ( 𝜑 → 7 ≤ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 47 |
34 28 32 46 40
|
letrd |
⊢ ( 𝜑 → 7 ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 48 |
47 4
|
breqtrrd |
⊢ ( 𝜑 → 7 ≤ 𝐵 ) |
| 49 |
45 48
|
lcmineqlem |
⊢ ( 𝜑 → ( 2 ↑ 𝐵 ) ≤ ( lcm ‘ ( 1 ... 𝐵 ) ) ) |