Metamath Proof Explorer


Theorem aks4d1p1

Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Hypotheses aks4d1p1.1 φN3
aks4d1p1.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p1.3 B=log2N5
Assertion aks4d1p1 φA<2B

Proof

Step Hyp Ref Expression
1 aks4d1p1.1 φN3
2 aks4d1p1.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p1.3 B=log2N5
4 3nn 3
5 4 a1i φ3<N3
6 1 adantr φ3<NN3
7 eluznn 3N3N
8 5 6 7 syl2anc φ3<NN
9 3p1e4 3+1=4
10 simpr φ3<N3<N
11 3z 3
12 11 a1i φ3<N3
13 eluzelz N3N
14 1 13 syl φN
15 14 adantr φ3<NN
16 12 15 zltp1led φ3<N3<N3+1N
17 10 16 mpbid φ3<N3+1N
18 9 17 eqbrtrrid φ3<N4N
19 eqid log2log2N5+1=log2log2N5+1
20 eqid log2N2=log2N2
21 eqid log2N4=log2N4
22 8 2 3 18 19 20 21 aks4d1p1p5 φ3<NA<2B
23 22 ex φ3<NA<2B
24 simp2 φ3=Nk1log2323=N
25 24 eqcomd φ3=Nk1log232N=3
26 25 oveq1d φ3=Nk1log232Nk=3k
27 26 oveq1d φ3=Nk1log232Nk1=3k1
28 27 3expa φ3=Nk1log232Nk1=3k1
29 28 prodeq2dv φ3=Nk=1log232Nk1=k=1log2323k1
30 29 oveq2d φ3=N3log2log235k=1log232Nk1=3log2log235k=1log2323k1
31 2rp 2+
32 31 a1i φ2+
33 1red φ1
34 1lt2 1<2
35 34 a1i φ1<2
36 33 35 ltned φ12
37 36 necomd φ21
38 11 a1i φ3
39 32 37 38 relogbexpd φlog223=3
40 39 eqcomd φ3=log223
41 cu2 23=8
42 41 a1i φ23=8
43 42 oveq2d φlog223=log28
44 40 43 eqtrd φ3=log28
45 2z 2
46 45 a1i φ2
47 46 zred φ2
48 47 leidd φ22
49 8re 8
50 49 a1i φ8
51 8pos 0<8
52 51 a1i φ0<8
53 32 rpgt0d φ0<2
54 3re 3
55 54 a1i φ3
56 4 nngt0i 0<3
57 56 a1i φ0<3
58 47 53 55 57 37 relogbcld φlog23
59 5nn0 50
60 59 a1i φ50
61 58 60 reexpcld φlog235
62 ceilcl log235log235
63 61 62 syl φlog235
64 63 zred φlog235
65 0red φ0
66 9re 9
67 66 a1i φ9
68 50 lep1d φ88+1
69 8p1e9 8+1=9
70 69 a1i φ8+1=9
71 68 70 breqtrd φ89
72 2re 2
73 72 a1i φ2
74 2pos 0<2
75 74 a1i φ0<2
76 3pos 0<3
77 76 a1i φ0<3
78 73 75 55 77 37 relogbcld φlog23
79 78 60 reexpcld φlog235
80 79 62 syl φlog235
81 80 zred φlog235
82 55 leidd φ33
83 55 82 3lexlogpow5ineq4 φ9<log235
84 67 79 83 ltled φ9log235
85 ceilge log235log235log235
86 79 85 syl φlog235log235
87 67 79 81 84 86 letrd φ9log235
88 50 67 64 71 87 letrd φ8log235
89 65 50 64 52 88 ltletrd φ0<log235
90 46 48 50 52 64 89 88 logblebd φlog28log2log235
91 44 90 eqbrtrd φ3log2log235
92 79 33 readdcld φlog235+1
93 1nn0 10
94 6nn 6
95 93 94 decnncl 16
96 95 a1i φ16
97 96 nnred φ16
98 ceilm1lt log235log2351<log235
99 79 98 syl φlog2351<log235
100 81 33 79 ltsubaddd φlog2351<log235log235<log235+1
101 99 100 mpbid φlog235<log235+1
102 3lexlogpow5ineq5 log23515
103 102 a1i φlog23515
104 5p1e6 5+1=6
105 eqid 15=15
106 93 59 104 105 decsuc 15+1=16
107 106 a1i φ15+1=16
108 97 recnd φ16
109 1cnd φ1
110 5nn 5
111 93 110 decnncl 15
112 111 a1i φ15
113 112 nncnd φ15
114 108 109 113 subadd2d φ161=1515+1=16
115 107 114 mpbird φ161=15
116 115 eqcomd φ15=161
117 103 116 breqtrd φlog235161
118 leaddsub log235116log235+116log235161
119 79 33 97 118 syl3anc φlog235+116log235161
120 117 119 mpbird φlog235+116
121 81 92 97 101 120 ltletrd φlog235<16
122 eqid 16=16
123 2exp4 24=16
124 122 123 eqtr4i 16=24
125 124 a1i φ16=24
126 121 125 breqtrd φlog235<24
127 46 uzidd φ22
128 64 89 elrpd φlog235+
129 4z 4
130 129 a1i φ4
131 32 130 rpexpcld φ24+
132 logblt 22log235+24+log235<24log2log235<log224
133 127 128 131 132 syl3anc φlog235<24log2log235<log224
134 126 133 mpbid φlog2log235<log224
135 32 37 130 relogbexpd φlog224=4
136 9 eqcomi 4=3+1
137 136 a1i φ4=3+1
138 135 137 eqtrd φlog224=3+1
139 134 138 breqtrd φlog2log235<3+1
140 91 139 jca φ3log2log235log2log235<3+1
141 73 75 55 57 37 relogbcld φlog23
142 141 60 reexpcld φlog235
143 142 62 syl φlog235
144 143 zred φlog235
145 9pos 0<9
146 145 a1i φ0<9
147 65 67 144 146 87 ltletrd φ0<log235
148 73 75 144 147 37 relogbcld φlog2log235
149 flbi log2log2353log2log235=33log2log235log2log235<3+1
150 148 38 149 syl2anc φlog2log235=33log2log235log2log235<3+1
151 140 150 mpbird φlog2log235=3
152 151 oveq2d φ3log2log235=33
153 78 resqcld φlog232
154 3lexlogpow2ineq2 2<log232log232<3
155 154 a1i φ2<log232log232<3
156 155 simpld φ2<log232
157 73 153 156 ltled φ2log232
158 155 simprd φlog232<3
159 df-3 3=2+1
160 159 a1i φ3=2+1
161 158 160 breqtrd φlog232<2+1
162 157 161 jca φ2log232log232<2+1
163 141 resqcld φlog232
164 flbi log2322log232=22log232log232<2+1
165 163 46 164 syl2anc φlog232=22log232log232<2+1
166 162 165 mpbird φlog232=2
167 166 oveq2d φ1log232=12
168 167 prodeq1d φk=1log2323k1=k=123k1
169 1zzd φ1
170 169 46 jca φ12
171 1le2 12
172 171 a1i 1212
173 eluz 122112
174 172 173 mpbird 1221
175 170 174 syl φ21
176 3cn 3
177 176 a1i φk123
178 elfznn k12k
179 178 adantl φk12k
180 179 nnnn0d φk12k0
181 177 180 expcld φk123k
182 1cnd φk121
183 181 182 subcld φk123k1
184 oveq2 k=23k=32
185 184 oveq1d k=23k1=321
186 175 183 185 fprodm1 φk=123k1=k=1213k1321
187 2m1e1 21=1
188 187 a1i φ21=1
189 188 oveq2d φ121=11
190 189 prodeq1d φk=1213k1=k=113k1
191 55 recnd φ3
192 93 a1i φ10
193 191 192 expcld φ31
194 193 109 subcld φ311
195 169 194 jca φ1311
196 oveq2 k=13k=31
197 196 oveq1d k=13k1=311
198 197 fprod1 1311k=113k1=311
199 195 198 syl φk=113k1=311
200 190 199 eqtrd φk=1213k1=311
201 200 oveq1d φk=1213k1321=311321
202 186 201 eqtrd φk=123k1=311321
203 168 202 eqtrd φk=1log2323k1=311321
204 152 203 oveq12d φ3log2log235k=1log2323k1=33311321
205 3nn0 30
206 205 a1i φ30
207 55 206 reexpcld φ33
208 55 192 reexpcld φ31
209 208 33 resubcld φ311
210 55 resqcld φ32
211 210 33 resubcld φ321
212 209 211 remulcld φ311321
213 207 212 remulcld φ33311321
214 9nn0 90
215 214 a1i φ90
216 73 215 reexpcld φ29
217 216 33 resubcld φ291
218 elnnz log235log2350<log235
219 143 147 218 sylanbrc φlog235
220 219 orcd φlog235log235=0
221 elnn0 log2350log235log235=0
222 221 a1i φlog2350log235log235=0
223 220 222 mpbird φlog2350
224 73 223 reexpcld φ2log235
225 8cn 8
226 2cn 2
227 8t2e16 82=16
228 225 226 227 mulcomli 28=16
229 228 a1i φ28=16
230 229 oveq2d φ2728=2716
231 6nn0 60
232 93 231 deccl 160
233 2nn0 20
234 7nn0 70
235 eqid 27=27
236 93 93 deccl 110
237 0nn0 00
238 233 dec0h 2=02
239 eqid 11=11
240 232 nn0cni 16
241 240 mul02i 016=0
242 ax-1cn 1
243 176 242 9 addcomli 1+3=4
244 241 243 oveq12i 016+1+3=0+4
245 4cn 4
246 245 addlidi 0+4=4
247 244 246 eqtri 016+1+3=4
248 93 dec0h 1=01
249 2t1e2 21=2
250 0p1e1 0+1=1
251 249 250 oveq12i 21+0+1=2+1
252 2p1e3 2+1=3
253 251 252 eqtri 21+0+1=3
254 6cn 6
255 6t2e12 62=12
256 254 226 255 mulcomli 26=12
257 93 233 252 256 decsuc 26+1=13
258 93 231 237 93 122 248 233 205 93 253 257 decma2c 216+1=33
259 237 233 93 93 238 239 232 205 205 247 258 decmac 216+11=43
260 4nn0 40
261 7cn 7
262 261 mulridi 71=7
263 262 oveq1i 71+4=7+4
264 7p4e11 7+4=11
265 263 264 eqtri 71+4=11
266 7t6e42 76=42
267 234 93 231 122 233 260 265 266 decmul2c 716=112
268 232 233 234 235 233 236 259 267 decmul1c 2716=432
269 268 a1i φ2716=432
270 230 269 eqtrd φ2728=432
271 260 205 deccl 430
272 59 93 deccl 510
273 2lt10 2<10
274 3lt10 3<10
275 4lt5 4<5
276 260 59 205 93 274 275 decltc 43<51
277 271 272 233 93 273 276 decltc 432<511
278 277 a1i φ432<511
279 270 278 eqbrtrd φ2728<511
280 3exp3 33=27
281 280 a1i φ33=27
282 281 eqcomd φ27=33
283 191 exp1d φ31=3
284 283 oveq1d φ311=31
285 3m1e2 31=2
286 285 a1i φ31=2
287 284 286 eqtr2d φ2=311
288 sq3 32=9
289 288 a1i φ32=9
290 289 oveq1d φ321=91
291 9m1e8 91=8
292 291 a1i φ91=8
293 290 292 eqtr2d φ8=321
294 287 293 oveq12d φ28=311321
295 282 294 oveq12d φ2728=33311321
296 df-9 9=8+1
297 296 a1i φ9=8+1
298 297 oveq2d φ29=28+1
299 287 194 eqeltrd φ2
300 8nn0 80
301 300 a1i φ80
302 299 192 301 expaddd φ28+1=2821
303 298 302 eqtrd φ29=2821
304 2exp8 28=256
305 304 a1i φ28=256
306 305 oveq1d φ2821=25621
307 299 exp1d φ21=2
308 307 oveq2d φ25621=2562
309 306 308 eqtrd φ2821=2562
310 233 59 deccl 250
311 eqid 256=256
312 eqid 25=25
313 2t2e4 22=4
314 313 250 oveq12i 22+0+1=4+1
315 4p1e5 4+1=5
316 314 315 eqtri 22+0+1=5
317 5t2e10 52=10
318 93 237 250 317 decsuc 52+1=11
319 233 59 237 93 312 248 233 93 93 316 318 decmac 252+1=51
320 233 310 231 311 233 93 319 255 decmul1c 2562=512
321 320 a1i φ2562=512
322 309 321 eqtrd φ2821=512
323 303 322 eqtrd φ29=512
324 323 oveq1d φ291=5121
325 1p1e2 1+1=2
326 eqid 511=511
327 272 93 325 326 decsuc 511+1=512
328 272 233 deccl 5120
329 328 nn0cni 512
330 272 93 deccl 5110
331 330 nn0cni 511
332 329 242 331 subadd2i 5121=511511+1=512
333 327 332 mpbir 5121=511
334 333 a1i φ5121=511
335 324 334 eqtr2d φ511=291
336 279 295 335 3brtr3d φ33311321<291
337 216 ltm1d φ291<29
338 215 nn0zd φ9
339 73 338 143 35 leexp2d φ9log235292log235
340 87 339 mpbid φ292log235
341 217 216 224 337 340 ltletrd φ291<2log235
342 213 217 224 336 341 lttrd φ33311321<2log235
343 204 342 eqbrtrd φ3log2log235k=1log2323k1<2log235
344 343 adantr φ3=N3log2log235k=1log2323k1<2log235
345 30 344 eqbrtrd φ3=N3log2log235k=1log232Nk1<2log235
346 simpr φ3=N3=N
347 oveq2 3=Nlog23=log2N
348 347 adantl φ3=Nlog23=log2N
349 348 oveq1d φ3=Nlog235=log2N5
350 349 fveq2d φ3=Nlog235=log2N5
351 3 a1i φ3=NB=log2N5
352 351 eqcomd φ3=Nlog2N5=B
353 350 352 eqtrd φ3=Nlog235=B
354 353 oveq2d φ3=Nlog2log235=log2B
355 354 fveq2d φ3=Nlog2log235=log2B
356 346 355 oveq12d φ3=N3log2log235=Nlog2B
357 346 oveq2d φ3=Nlog23=log2N
358 357 oveq1d φ3=Nlog232=log2N2
359 358 fveq2d φ3=Nlog232=log2N2
360 359 oveq2d φ3=N1log232=1log2N2
361 360 prodeq1d φ3=Nk=1log232Nk1=k=1log2N2Nk1
362 356 361 oveq12d φ3=N3log2log235k=1log232Nk1=Nlog2Bk=1log2N2Nk1
363 350 oveq2d φ3=N2log235=2log2N5
364 345 362 363 3brtr3d φ3=NNlog2Bk=1log2N2Nk1<2log2N5
365 2 a1i φ3=NA=Nlog2Bk=1log2N2Nk1
366 365 eqcomd φ3=NNlog2Bk=1log2N2Nk1=A
367 3 oveq2i 2B=2log2N5
368 367 a1i φ3=N2B=2log2N5
369 368 eqcomd φ3=N2log2N5=2B
370 364 366 369 3brtr3d φ3=NA<2B
371 370 ex φ3=NA<2B
372 eluzle N33N
373 1 372 syl φ3N
374 14 zred φN
375 55 374 leloed φ3N3<N3=N
376 373 375 mpbid φ3<N3=N
377 23 371 376 mpjaod φA<2B