Metamath Proof Explorer


Theorem aks4d1p1p5

Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p5.1 φ N
aks4d1p1p5.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p1p5.3 B = log 2 N 5
aks4d1p1p5.4 φ 4 N
aks4d1p1p5.5 C = log 2 log 2 N 5 + 1
aks4d1p1p5.6 D = log 2 N 2
aks4d1p1p5.7 E = log 2 N 4
Assertion aks4d1p1p5 φ A < 2 B

Proof

Step Hyp Ref Expression
1 aks4d1p1p5.1 φ N
2 aks4d1p1p5.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p1p5.3 B = log 2 N 5
4 aks4d1p1p5.4 φ 4 N
5 aks4d1p1p5.5 C = log 2 log 2 N 5 + 1
6 aks4d1p1p5.6 D = log 2 N 2
7 aks4d1p1p5.7 E = log 2 N 4
8 3re 3
9 8 a1i φ 3
10 4re 4
11 10 a1i φ 4
12 1 nnred φ N
13 9 lep1d φ 3 3 + 1
14 3p1e4 3 + 1 = 4
15 13 14 breqtrdi φ 3 4
16 9 11 12 15 4 letrd φ 3 N
17 2re 2
18 17 a1i φ x 4 N 2
19 2pos 0 < 2
20 19 a1i φ x 4 N 0 < 2
21 elicc2 4 N x 4 N x 4 x x N
22 11 12 21 syl2anc φ x 4 N x 4 x x N
23 22 biimpd φ x 4 N x 4 x x N
24 23 imp φ x 4 N x 4 x x N
25 24 simp1d φ x 4 N x
26 0red φ 0
27 26 adantr φ x 4 N 0
28 10 a1i φ x 4 N 4
29 4pos 0 < 4
30 29 a1i φ x 4 N 0 < 4
31 24 simp2d φ x 4 N 4 x
32 27 28 25 30 31 ltletrd φ x 4 N 0 < x
33 1red φ 1
34 1lt2 1 < 2
35 34 a1i φ 1 < 2
36 33 35 ltned φ 1 2
37 36 necomd φ 2 1
38 37 adantr φ x 4 N 2 1
39 18 20 25 32 38 relogbcld φ x 4 N log 2 x
40 5nn0 5 0
41 40 a1i φ x 4 N 5 0
42 39 41 reexpcld φ x 4 N log 2 x 5
43 1red φ x 4 N 1
44 42 43 readdcld φ x 4 N log 2 x 5 + 1
45 27 43 readdcld φ x 4 N 0 + 1
46 27 ltp1d φ x 4 N 0 < 0 + 1
47 41 nn0zd φ x 4 N 5
48 ax-resscn
49 48 18 sselid φ x 4 N 2
50 27 20 gtned φ x 4 N 2 0
51 logb1 2 2 0 2 1 log 2 1 = 0
52 49 50 38 51 syl3anc φ x 4 N log 2 1 = 0
53 1lt4 1 < 4
54 53 a1i φ x 4 N 1 < 4
55 43 28 25 54 31 ltletrd φ x 4 N 1 < x
56 2z 2
57 56 a1i φ x 4 N 2
58 57 uzidd φ x 4 N 2 2
59 1rp 1 +
60 59 a1i φ x 4 N 1 +
61 25 32 elrpd φ x 4 N x +
62 logblt 2 2 1 + x + 1 < x log 2 1 < log 2 x
63 58 60 61 62 syl3anc φ x 4 N 1 < x log 2 1 < log 2 x
64 55 63 mpbid φ x 4 N log 2 1 < log 2 x
65 52 64 eqbrtrrd φ x 4 N 0 < log 2 x
66 expgt0 log 2 x 5 0 < log 2 x 0 < log 2 x 5
67 39 47 65 66 syl3anc φ x 4 N 0 < log 2 x 5
68 27 42 43 67 ltadd1dd φ x 4 N 0 + 1 < log 2 x 5 + 1
69 27 45 44 46 68 lttrd φ x 4 N 0 < log 2 x 5 + 1
70 18 20 44 69 38 relogbcld φ x 4 N log 2 log 2 x 5 + 1
71 18 70 remulcld φ x 4 N 2 log 2 log 2 x 5 + 1
72 0red φ x 4 N 0
73 simpr φ x 4 N x 4 N
74 11 12 jca φ 4 N
75 74 adantr φ x 4 N 4 N
76 75 21 syl φ x 4 N x 4 N x 4 x x N
77 73 76 mpbid φ x 4 N x 4 x x N
78 77 simp2d φ x 4 N 4 x
79 72 28 25 30 78 ltletrd φ x 4 N 0 < x
80 18 20 25 79 38 relogbcld φ x 4 N log 2 x
81 80 resqcld φ x 4 N log 2 x 2
82 71 81 readdcld φ x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2
83 82 fmpttd φ x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N
84 48 a1i φ
85 3lt4 3 < 4
86 85 a1i φ 3 < 4
87 12 33 readdcld φ N + 1
88 12 ltp1d φ N < N + 1
89 11 12 87 4 88 lelttrd φ 4 < N + 1
90 86 89 jca φ 3 < 4 4 < N + 1
91 9 rexrd φ 3 *
92 87 rexrd φ N + 1 *
93 11 rexrd φ 4 *
94 elioo5 3 * N + 1 * 4 * 4 3 N + 1 3 < 4 4 < N + 1
95 91 92 93 94 syl3anc φ 4 3 N + 1 3 < 4 4 < N + 1
96 90 95 mpbird φ 4 3 N + 1
97 9 11 12 86 4 ltletrd φ 3 < N
98 97 88 jca φ 3 < N N < N + 1
99 12 rexrd φ N *
100 elioo5 3 * N + 1 * N * N 3 N + 1 3 < N N < N + 1
101 91 92 99 100 syl3anc φ N 3 N + 1 3 < N N < N + 1
102 98 101 mpbird φ N 3 N + 1
103 iccssioo2 4 3 N + 1 N 3 N + 1 4 N 3 N + 1
104 96 102 103 syl2anc φ 4 N 3 N + 1
105 104 resmptd φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 4 N = x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2
106 2cnd φ x 3 N + 1 2
107 17 a1i φ x 3 N + 1 2
108 19 a1i φ x 3 N + 1 0 < 2
109 elioore x 3 N + 1 x
110 109 adantl φ x 3 N + 1 x
111 0red φ x 3 N + 1 0
112 8 a1i φ x 3 N + 1 3
113 3pos 0 < 3
114 113 a1i φ x 3 N + 1 0 < 3
115 eliooord x 3 N + 1 3 < x x < N + 1
116 simpl 3 < x x < N + 1 3 < x
117 115 116 syl x 3 N + 1 3 < x
118 117 adantl φ x 3 N + 1 3 < x
119 111 112 110 114 118 lttrd φ x 3 N + 1 0 < x
120 37 adantr φ x 3 N + 1 2 1
121 107 108 110 119 120 relogbcld φ x 3 N + 1 log 2 x
122 40 a1i φ x 3 N + 1 5 0
123 121 122 reexpcld φ x 3 N + 1 log 2 x 5
124 1red φ x 3 N + 1 1
125 123 124 readdcld φ x 3 N + 1 log 2 x 5 + 1
126 111 124 readdcld φ x 3 N + 1 0 + 1
127 111 ltp1d φ x 3 N + 1 0 < 0 + 1
128 122 nn0zd φ x 3 N + 1 5
129 34 a1i φ x 3 N + 1 1 < 2
130 2lt3 2 < 3
131 130 a1i φ x 3 N + 1 2 < 3
132 124 107 112 129 131 lttrd φ x 3 N + 1 1 < 3
133 124 112 110 132 118 lttrd φ x 3 N + 1 1 < x
134 110 119 elrpd φ x 3 N + 1 x +
135 2rp 2 +
136 135 a1i φ x 3 N + 1 2 +
137 134 136 129 jca32 φ x 3 N + 1 x + 2 + 1 < 2
138 logbgt0b x + 2 + 1 < 2 0 < log 2 x 1 < x
139 137 138 syl φ x 3 N + 1 0 < log 2 x 1 < x
140 133 139 mpbird φ x 3 N + 1 0 < log 2 x
141 121 128 140 66 syl3anc φ x 3 N + 1 0 < log 2 x 5
142 111 123 124 141 ltadd1dd φ x 3 N + 1 0 + 1 < log 2 x 5 + 1
143 111 126 125 127 142 lttrd φ x 3 N + 1 0 < log 2 x 5 + 1
144 124 129 ltned φ x 3 N + 1 1 2
145 144 necomd φ x 3 N + 1 2 1
146 107 108 125 143 145 relogbcld φ x 3 N + 1 log 2 log 2 x 5 + 1
147 146 recnd φ x 3 N + 1 log 2 log 2 x 5 + 1
148 106 147 mulcld φ x 3 N + 1 2 log 2 log 2 x 5 + 1
149 48 121 sselid φ x 3 N + 1 log 2 x
150 149 sqcld φ x 3 N + 1 log 2 x 2
151 148 150 addcld φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2
152 151 fmpttd φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1
153 ioossre 3 N + 1
154 153 a1i φ 3 N + 1
155 84 152 154 3jca φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1 3 N + 1
156 136 relogcld φ x 3 N + 1 log 2
157 125 156 remulcld φ x 3 N + 1 log 2 x 5 + 1 log 2
158 48 123 sselid φ x 3 N + 1 log 2 x 5
159 1cnd φ x 3 N + 1 1
160 158 159 addcld φ x 3 N + 1 log 2 x 5 + 1
161 111 108 gtned φ x 3 N + 1 2 0
162 106 161 logcld φ x 3 N + 1 log 2
163 111 143 gtned φ x 3 N + 1 log 2 x 5 + 1 0
164 loggt0b 2 + 0 < log 2 1 < 2
165 135 164 ax-mp 0 < log 2 1 < 2
166 35 165 sylibr φ 0 < log 2
167 26 166 ltned φ 0 log 2
168 167 necomd φ log 2 0
169 168 adantr φ x 3 N + 1 log 2 0
170 160 162 163 169 mulne0d φ x 3 N + 1 log 2 x 5 + 1 log 2 0
171 124 157 170 redivcld φ x 3 N + 1 1 log 2 x 5 + 1 log 2
172 5re 5
173 172 a1i φ x 3 N + 1 5
174 4nn0 4 0
175 174 a1i φ x 3 N + 1 4 0
176 121 175 reexpcld φ x 3 N + 1 log 2 x 4
177 173 176 remulcld φ x 3 N + 1 5 log 2 x 4
178 110 156 remulcld φ x 3 N + 1 x log 2
179 48 110 sselid φ x 3 N + 1 x
180 111 119 gtned φ x 3 N + 1 x 0
181 179 162 180 169 mulne0d φ x 3 N + 1 x log 2 0
182 124 178 181 redivcld φ x 3 N + 1 1 x log 2
183 177 182 remulcld φ x 3 N + 1 5 log 2 x 4 1 x log 2
184 183 111 readdcld φ x 3 N + 1 5 log 2 x 4 1 x log 2 + 0
185 171 184 remulcld φ x 3 N + 1 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0
186 107 185 remulcld φ x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0
187 156 resqcld φ x 3 N + 1 log 2 2
188 56 a1i φ x 3 N + 1 2
189 162 169 188 expne0d φ x 3 N + 1 log 2 2 0
190 107 187 189 redivcld φ x 3 N + 1 2 log 2 2
191 134 relogcld φ x 3 N + 1 log x
192 2m1e1 2 1 = 1
193 1nn0 1 0
194 192 193 eqeltri 2 1 0
195 194 a1i φ x 3 N + 1 2 1 0
196 191 195 reexpcld φ x 3 N + 1 log x 2 1
197 196 110 180 redivcld φ x 3 N + 1 log x 2 1 x
198 190 197 remulcld φ x 3 N + 1 2 log 2 2 log x 2 1 x
199 186 198 readdcld φ x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x
200 199 ralrimiva φ x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x
201 nfcv _ x 3 N + 1
202 201 fnmptf x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x Fn 3 N + 1
203 200 202 syl φ x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x Fn 3 N + 1
204 9 leidd φ 3 3
205 12 lep1d φ N N + 1
206 9 12 87 16 205 letrd φ 3 N + 1
207 9 87 204 206 aks4d1p1p6 φ dx 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x = x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x
208 207 fneq1d φ dx 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x Fn 3 N + 1 x 3 N + 1 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x Fn 3 N + 1
209 203 208 mpbird φ dx 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x Fn 3 N + 1
210 209 fndmd φ dom dx 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x = 3 N + 1
211 dvcn x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1 3 N + 1 dom dx 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x = 3 N + 1 x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1 cn
212 155 210 211 syl2anc φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1 cn
213 rescncf 4 N 3 N + 1 x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1 cn x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 4 N : 4 N cn
214 104 213 syl φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 3 N + 1 cn x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 4 N : 4 N cn
215 212 214 mpd φ x 3 N + 1 2 log 2 log 2 x 5 + 1 + log 2 x 2 4 N : 4 N cn
216 105 215 eqeltrrd φ x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N cn
217 cncffvrn x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N cn x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N cn x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N
218 84 216 217 syl2anc φ x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N cn x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N
219 83 218 mpbird φ x 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 : 4 N cn
220 174 a1i φ x 4 N 4 0
221 39 220 reexpcld φ x 4 N log 2 x 4
222 221 fmpttd φ x 4 N log 2 x 4 : 4 N
223 104 resmptd φ x 3 N + 1 log 2 x 4 4 N = x 4 N log 2 x 4
224 48 176 sselid φ x 3 N + 1 log 2 x 4
225 224 fmpttd φ x 3 N + 1 log 2 x 4 : 3 N + 1
226 84 225 154 3jca φ x 3 N + 1 log 2 x 4 : 3 N + 1 3 N + 1
227 10 a1i φ x 3 N + 1 4
228 156 175 reexpcld φ x 3 N + 1 log 2 4
229 4z 4
230 229 a1i φ x 3 N + 1 4
231 162 169 230 expne0d φ x 3 N + 1 log 2 4 0
232 227 228 231 redivcld φ x 3 N + 1 4 log 2 4
233 4m1e3 4 1 = 3
234 3nn0 3 0
235 233 234 eqeltri 4 1 0
236 235 a1i φ x 3 N + 1 4 1 0
237 191 236 reexpcld φ x 3 N + 1 log x 4 1
238 237 110 180 redivcld φ x 3 N + 1 log x 4 1 x
239 232 238 remulcld φ x 3 N + 1 4 log 2 4 log x 4 1 x
240 239 ralrimiva φ x 3 N + 1 4 log 2 4 log x 4 1 x
241 201 fnmptf x 3 N + 1 4 log 2 4 log x 4 1 x x 3 N + 1 4 log 2 4 log x 4 1 x Fn 3 N + 1
242 240 241 syl φ x 3 N + 1 4 log 2 4 log x 4 1 x Fn 3 N + 1
243 113 a1i φ 0 < 3
244 eqid x 3 N + 1 log 2 x 4 = x 3 N + 1 log 2 x 4
245 eqid x 3 N + 1 4 log 2 4 log x 4 1 x = x 3 N + 1 4 log 2 4 log x 4 1 x
246 eqid 4 log 2 4 = 4 log 2 4
247 4nn 4
248 247 a1i φ 4
249 9 87 243 206 244 245 246 248 dvrelogpow2b φ dx 3 N + 1 log 2 x 4 d x = x 3 N + 1 4 log 2 4 log x 4 1 x
250 249 fneq1d φ dx 3 N + 1 log 2 x 4 d x Fn 3 N + 1 x 3 N + 1 4 log 2 4 log x 4 1 x Fn 3 N + 1
251 242 250 mpbird φ dx 3 N + 1 log 2 x 4 d x Fn 3 N + 1
252 251 fndmd φ dom dx 3 N + 1 log 2 x 4 d x = 3 N + 1
253 dvcn x 3 N + 1 log 2 x 4 : 3 N + 1 3 N + 1 dom dx 3 N + 1 log 2 x 4 d x = 3 N + 1 x 3 N + 1 log 2 x 4 : 3 N + 1 cn
254 226 252 253 syl2anc φ x 3 N + 1 log 2 x 4 : 3 N + 1 cn
255 rescncf 4 N 3 N + 1 x 3 N + 1 log 2 x 4 : 3 N + 1 cn x 3 N + 1 log 2 x 4 4 N : 4 N cn
256 104 255 syl φ x 3 N + 1 log 2 x 4 : 3 N + 1 cn x 3 N + 1 log 2 x 4 4 N : 4 N cn
257 254 256 mpd φ x 3 N + 1 log 2 x 4 4 N : 4 N cn
258 223 257 eqeltrrd φ x 4 N log 2 x 4 : 4 N cn
259 cncffvrn x 4 N log 2 x 4 : 4 N cn x 4 N log 2 x 4 : 4 N cn x 4 N log 2 x 4 : 4 N
260 84 258 259 syl2anc φ x 4 N log 2 x 4 : 4 N cn x 4 N log 2 x 4 : 4 N
261 222 260 mpbird φ x 4 N log 2 x 4 : 4 N cn
262 11 12 15 4 aks4d1p1p6 φ dx 4 N 2 log 2 log 2 x 5 + 1 + log 2 x 2 d x = x 4 N 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x
263 29 a1i φ 0 < 4
264 eqid x 4 N log 2 x 4 = x 4 N log 2 x 4
265 eqid x 4 N 4 log 2 4 log x 4 1 x = x 4 N 4 log 2 4 log x 4 1 x
266 11 12 263 4 264 265 246 248 dvrelogpow2b φ dx 4 N log 2 x 4 d x = x 4 N 4 log 2 4 log x 4 1 x
267 233 a1i φ x 4 N 4 1 = 3
268 267 oveq2d φ x 4 N log x 4 1 = log x 3
269 268 oveq1d φ x 4 N log x 4 1 x = log x 3 x
270 269 oveq2d φ x 4 N 4 log 2 4 log x 4 1 x = 4 log 2 4 log x 3 x
271 270 mpteq2dva φ x 4 N 4 log 2 4 log x 4 1 x = x 4 N 4 log 2 4 log x 3 x
272 266 271 eqtrd φ dx 4 N log 2 x 4 d x = x 4 N 4 log 2 4 log x 3 x
273 elioore x 4 N x
274 273 adantl φ x 4 N x
275 10 a1i φ x 4 N 4
276 eliooord x 4 N 4 < x x < N
277 276 simpld x 4 N 4 < x
278 277 adantl φ x 4 N 4 < x
279 275 274 278 ltled φ x 4 N 4 x
280 274 279 aks4d1p1p7 φ x 4 N 2 1 log 2 x 5 + 1 log 2 5 log 2 x 4 1 x log 2 + 0 + 2 log 2 2 log x 2 1 x 4 log 2 4 log x 3 x
281 oveq2 x = 4 log 2 x = log 2 4
282 281 oveq1d x = 4 log 2 x 5 = log 2 4 5
283 282 oveq1d x = 4 log 2 x 5 + 1 = log 2 4 5 + 1
284 283 oveq2d x = 4 log 2 log 2 x 5 + 1 = log 2 log 2 4 5 + 1
285 284 oveq2d x = 4 2 log 2 log 2 x 5 + 1 = 2 log 2 log 2 4 5 + 1
286 281 oveq1d x = 4 log 2 x 2 = log 2 4 2
287 285 286 oveq12d x = 4 2 log 2 log 2 x 5 + 1 + log 2 x 2 = 2 log 2 log 2 4 5 + 1 + log 2 4 2
288 281 oveq1d x = 4 log 2 x 4 = log 2 4 4
289 oveq2 x = N log 2 x = log 2 N
290 289 oveq1d x = N log 2 x 5 = log 2 N 5
291 290 oveq1d x = N log 2 x 5 + 1 = log 2 N 5 + 1
292 291 oveq2d x = N log 2 log 2 x 5 + 1 = log 2 log 2 N 5 + 1
293 292 oveq2d x = N 2 log 2 log 2 x 5 + 1 = 2 log 2 log 2 N 5 + 1
294 5 a1i x = N C = log 2 log 2 N 5 + 1
295 294 oveq2d x = N 2 C = 2 log 2 log 2 N 5 + 1
296 295 eqcomd x = N 2 log 2 log 2 N 5 + 1 = 2 C
297 293 296 eqtrd x = N 2 log 2 log 2 x 5 + 1 = 2 C
298 289 oveq1d x = N log 2 x 2 = log 2 N 2
299 6 a1i x = N D = log 2 N 2
300 299 eqcomd x = N log 2 N 2 = D
301 298 300 eqtrd x = N log 2 x 2 = D
302 297 301 oveq12d x = N 2 log 2 log 2 x 5 + 1 + log 2 x 2 = 2 C + D
303 289 oveq1d x = N log 2 x 4 = log 2 N 4
304 7 a1i x = N E = log 2 N 4
305 304 eqcomd x = N log 2 N 4 = E
306 303 305 eqtrd x = N log 2 x 4 = E
307 sq2 2 2 = 4
308 307 oveq2i log 2 2 2 = log 2 4
309 308 a1i φ log 2 2 2 = log 2 4
310 309 eqcomd φ log 2 4 = log 2 2 2
311 135 a1i φ 2 +
312 56 a1i φ 2
313 relogbexp 2 + 2 1 2 log 2 2 2 = 2
314 311 37 312 313 syl3anc φ log 2 2 2 = 2
315 310 314 eqtrd φ log 2 4 = 2
316 315 oveq1d φ log 2 4 5 = 2 5
317 316 oveq1d φ log 2 4 5 + 1 = 2 5 + 1
318 317 oveq2d φ log 2 log 2 4 5 + 1 = log 2 2 5 + 1
319 17 a1i φ 2
320 319 leidd φ 2 2
321 315 319 eqeltrd φ log 2 4
322 40 a1i φ 5 0
323 321 322 reexpcld φ log 2 4 5
324 316 323 eqeltrrd φ 2 5
325 324 33 readdcld φ 2 5 + 1
326 322 nn0zd φ 5
327 19 a1i φ 0 < 2
328 327 315 breqtrrd φ 0 < log 2 4
329 321 326 328 3jca φ log 2 4 5 0 < log 2 4
330 expgt0 log 2 4 5 0 < log 2 4 0 < log 2 4 5
331 329 330 syl φ 0 < log 2 4 5
332 331 316 breqtrd φ 0 < 2 5
333 324 ltp1d φ 2 5 < 2 5 + 1
334 26 324 325 332 333 lttrd φ 0 < 2 5 + 1
335 6nn0 6 0
336 335 a1i φ 6 0
337 319 336 reexpcld φ 2 6
338 336 nn0zd φ 6
339 expgt0 2 6 0 < 2 0 < 2 6
340 319 338 327 339 syl3anc φ 0 < 2 6
341 324 324 readdcld φ 2 5 + 2 5
342 33 319 35 ltled φ 1 2
343 319 322 342 expge1d φ 1 2 5
344 33 324 324 343 leadd2dd φ 2 5 + 1 2 5 + 2 5
345 341 leidd φ 2 5 + 2 5 2 5 + 2 5
346 df-6 6 = 5 + 1
347 346 a1i φ 6 = 5 + 1
348 347 oveq2d φ 2 6 = 2 5 + 1
349 2cn 2
350 349 a1i φ 2
351 193 a1i φ 1 0
352 350 351 322 expaddd φ 2 5 + 1 = 2 5 2 1
353 348 352 eqtrd φ 2 6 = 2 5 2 1
354 350 exp1d φ 2 1 = 2
355 354 oveq2d φ 2 5 2 1 = 2 5 2
356 353 355 eqtrd φ 2 6 = 2 5 2
357 48 324 sselid φ 2 5
358 357 times2d φ 2 5 2 = 2 5 + 2 5
359 356 358 eqtrd φ 2 6 = 2 5 + 2 5
360 359 eqcomd φ 2 5 + 2 5 = 2 6
361 345 360 breqtrd φ 2 5 + 2 5 2 6
362 325 341 337 344 361 letrd φ 2 5 + 1 2 6
363 312 320 325 334 337 340 362 logblebd φ log 2 2 5 + 1 log 2 2 6
364 311 37 338 relogbexpd φ log 2 2 6 = 6
365 363 364 breqtrd φ log 2 2 5 + 1 6
366 318 365 eqbrtrd φ log 2 log 2 4 5 + 1 6
367 6t2e12 6 2 = 12
368 6cn 6
369 368 a1i φ 6
370 2nn 2
371 193 370 decnncl 12
372 371 a1i φ 12
373 372 nnred φ 12
374 373 recnd φ 12
375 26 327 gtned φ 2 0
376 369 350 374 375 ldiv φ 6 2 = 12 6 = 12 2
377 367 376 mpbii φ 6 = 12 2
378 366 377 breqtrd φ log 2 log 2 4 5 + 1 12 2
379 323 33 readdcld φ log 2 4 5 + 1
380 26 33 readdcld φ 0 + 1
381 26 ltp1d φ 0 < 0 + 1
382 26 323 33 331 ltadd1dd φ 0 + 1 < log 2 4 5 + 1
383 26 380 379 381 382 lttrd φ 0 < log 2 4 5 + 1
384 319 327 379 383 37 relogbcld φ log 2 log 2 4 5 + 1
385 384 373 311 lemuldiv2d φ 2 log 2 log 2 4 5 + 1 12 log 2 log 2 4 5 + 1 12 2
386 378 385 mpbird φ 2 log 2 log 2 4 5 + 1 12
387 315 oveq1d φ log 2 4 2 = 2 2
388 387 307 eqtrdi φ log 2 4 2 = 4
389 388 oveq2d φ 16 log 2 4 2 = 16 4
390 2nn0 2 0
391 eqid 12 = 12
392 4cn 4
393 4p2e6 4 + 2 = 6
394 392 349 393 addcomli 2 + 4 = 6
395 193 390 174 391 394 decaddi 12 + 4 = 16
396 392 a1i φ 4
397 6nn 6
398 193 397 decnncl 16
399 398 a1i φ 16
400 399 nnred φ 16
401 48 400 sselid φ 16
402 374 396 401 addlsub φ 12 + 4 = 16 12 = 16 4
403 395 402 mpbii φ 12 = 16 4
404 389 403 eqtr4d φ 16 log 2 4 2 = 12
405 404 eqcomd φ 12 = 16 log 2 4 2
406 386 405 breqtrd φ 2 log 2 log 2 4 5 + 1 16 log 2 4 2
407 319 384 remulcld φ 2 log 2 log 2 4 5 + 1
408 321 resqcld φ log 2 4 2
409 leaddsub 2 log 2 log 2 4 5 + 1 log 2 4 2 16 2 log 2 log 2 4 5 + 1 + log 2 4 2 16 2 log 2 log 2 4 5 + 1 16 log 2 4 2
410 407 408 400 409 syl3anc φ 2 log 2 log 2 4 5 + 1 + log 2 4 2 16 2 log 2 log 2 4 5 + 1 16 log 2 4 2
411 406 410 mpbird φ 2 log 2 log 2 4 5 + 1 + log 2 4 2 16
412 315 oveq1d φ log 2 4 4 = 2 4
413 2exp4 2 4 = 16
414 412 413 eqtrdi φ log 2 4 4 = 16
415 414 eqcomd φ 16 = log 2 4 4
416 411 415 breqtrd φ 2 log 2 log 2 4 5 + 1 + log 2 4 2 log 2 4 4
417 11 12 219 261 262 272 280 287 288 302 306 416 4 dvle2 φ 2 C + D E
418 1 2 3 16 5 6 7 417 aks4d1p1p4 φ A < 2 B