Metamath Proof Explorer


Theorem aks4d1p1p4

Description: Technical step for inequality. The hard work is in to prove the final hypothesis. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p4.1 φ N
aks4d1p1p4.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p1p4.3 B = log 2 N 5
aks4d1p1p4.4 φ 3 N
aks4d1p1p4.5 C = log 2 log 2 N 5 + 1
aks4d1p1p4.6 D = log 2 N 2
aks4d1p1p4.7 E = log 2 N 4
aks4d1p1p4.8 φ 2 C + D E
Assertion aks4d1p1p4 φ A < 2 B

Proof

Step Hyp Ref Expression
1 aks4d1p1p4.1 φ N
2 aks4d1p1p4.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p1p4.3 B = log 2 N 5
4 aks4d1p1p4.4 φ 3 N
5 aks4d1p1p4.5 C = log 2 log 2 N 5 + 1
6 aks4d1p1p4.6 D = log 2 N 2
7 aks4d1p1p4.7 E = log 2 N 4
8 aks4d1p1p4.8 φ 2 C + D E
9 1 nnred φ N
10 2re 2
11 10 a1i φ 2
12 2pos 0 < 2
13 12 a1i φ 0 < 2
14 1 nngt0d φ 0 < N
15 1red φ 1
16 1lt2 1 < 2
17 16 a1i φ 1 < 2
18 15 17 ltned φ 1 2
19 18 necomd φ 2 1
20 11 13 9 14 19 relogbcld φ log 2 N
21 5nn0 5 0
22 21 a1i φ 5 0
23 20 22 reexpcld φ log 2 N 5
24 ceilcl log 2 N 5 log 2 N 5
25 23 24 syl φ log 2 N 5
26 25 zred φ log 2 N 5
27 3 a1i φ B = log 2 N 5
28 27 eleq1d φ B log 2 N 5
29 26 28 mpbird φ B
30 0red φ 0
31 7re 7
32 31 a1i φ 7
33 7pos 0 < 7
34 33 a1i φ 0 < 7
35 9 4 3lexlogpow5ineq3 φ 7 < log 2 N 5
36 32 23 35 ltled φ 7 log 2 N 5
37 ceilge log 2 N 5 log 2 N 5 log 2 N 5
38 23 37 syl φ log 2 N 5 log 2 N 5
39 38 27 breqtrrd φ log 2 N 5 B
40 32 23 29 36 39 letrd φ 7 B
41 30 32 29 34 40 ltletrd φ 0 < B
42 11 13 29 41 19 relogbcld φ log 2 B
43 42 flcld φ log 2 B
44 30 15 readdcld φ 0 + 1
45 43 zred φ log 2 B
46 45 15 readdcld φ log 2 B + 1
47 11 13 11 13 19 relogbcld φ log 2 2
48 15 leidd φ 1 1
49 1cnd φ 1
50 49 addid2d φ 0 + 1 = 1
51 11 recnd φ 2
52 30 13 gtned φ 2 0
53 logbid1 2 2 0 2 1 log 2 2 = 1
54 51 52 19 53 syl3anc φ log 2 2 = 1
55 54 eqcomd φ 1 = log 2 2
56 55 eqcomd φ log 2 2 = 1
57 50 56 breq12d φ 0 + 1 log 2 2 1 1
58 48 57 mpbird φ 0 + 1 log 2 2
59 5re 5
60 59 a1i φ 5
61 11 60 readdcld φ 2 + 5
62 10 21 nn0addge1i 2 2 + 5
63 62 a1i φ 2 2 + 5
64 10 recni 2
65 5cn 5
66 64 65 addcomi 2 + 5 = 5 + 2
67 5p2e7 5 + 2 = 7
68 66 67 eqtri 2 + 5 = 7
69 68 a1i φ 2 + 5 = 7
70 32 leidd φ 7 7
71 69 70 eqbrtrd φ 2 + 5 7
72 11 61 32 63 71 letrd φ 2 7
73 11 32 29 72 40 letrd φ 2 B
74 2z 2
75 74 a1i φ 2
76 75 uzidd φ 2 2
77 2rp 2 +
78 77 a1i φ 2 +
79 29 41 elrpd φ B +
80 logbleb 2 2 2 + B + 2 B log 2 2 log 2 B
81 76 78 79 80 syl3anc φ 2 B log 2 2 log 2 B
82 73 81 mpbid φ log 2 2 log 2 B
83 44 47 42 58 82 letrd φ 0 + 1 log 2 B
84 fllep1 log 2 B log 2 B log 2 B + 1
85 42 84 syl φ log 2 B log 2 B + 1
86 44 42 46 83 85 letrd φ 0 + 1 log 2 B + 1
87 30 45 15 leadd1d φ 0 log 2 B 0 + 1 log 2 B + 1
88 86 87 mpbird φ 0 log 2 B
89 43 88 jca φ log 2 B 0 log 2 B
90 elnn0z log 2 B 0 log 2 B 0 log 2 B
91 89 90 sylibr φ log 2 B 0
92 9 91 reexpcld φ N log 2 B
93 fzfid φ 1 log 2 N 2 Fin
94 9 adantr φ k 1 log 2 N 2 N
95 elfznn k 1 log 2 N 2 k
96 95 adantl φ k 1 log 2 N 2 k
97 96 nnnn0d φ k 1 log 2 N 2 k 0
98 94 97 reexpcld φ k 1 log 2 N 2 N k
99 1red φ k 1 log 2 N 2 1
100 98 99 resubcld φ k 1 log 2 N 2 N k 1
101 93 100 fprodrecl φ k = 1 log 2 N 2 N k 1
102 92 101 remulcld φ N log 2 B k = 1 log 2 N 2 N k 1
103 2 a1i φ A = N log 2 B k = 1 log 2 N 2 N k 1
104 103 eleq1d φ A N log 2 B k = 1 log 2 N 2 N k 1
105 102 104 mpbird φ A
106 7 a1i φ E = log 2 N 4
107 106 oveq2d φ N E = N log 2 N 4
108 2cnd φ 2
109 78 rpne0d φ 2 0
110 109 19 nelprd φ ¬ 2 0 1
111 108 110 eldifd φ 2 0 1
112 9 recnd φ N
113 30 14 ltned φ 0 N
114 necom 0 N N 0
115 114 imbi2i φ 0 N φ N 0
116 113 115 mpbi φ N 0
117 116 neneqd φ ¬ N = 0
118 c0ex 0 V
119 118 elsn2 N 0 N = 0
120 117 119 sylnibr φ ¬ N 0
121 112 120 eldifd φ N 0
122 cxplogb 2 0 1 N 0 2 log 2 N = N
123 111 121 122 syl2anc φ 2 log 2 N = N
124 123 eqcomd φ N = 2 log 2 N
125 124 oveq1d φ N log 2 N 4 = 2 log 2 N log 2 N 4
126 eqidd φ 2 log 2 N log 2 N 4 = 2 log 2 N log 2 N 4
127 125 126 eqtrd φ N log 2 N 4 = 2 log 2 N log 2 N 4
128 107 127 eqtrd φ N E = 2 log 2 N log 2 N 4
129 106 eqcomd φ log 2 N 4 = E
130 4nn0 4 0
131 130 a1i φ 4 0
132 20 131 reexpcld φ log 2 N 4
133 106 eleq1d φ E log 2 N 4
134 132 133 mpbird φ E
135 134 recnd φ E
136 129 135 eqeltrd φ log 2 N 4
137 78 20 136 cxpmuld φ 2 log 2 N log 2 N 4 = 2 log 2 N log 2 N 4
138 137 eqcomd φ 2 log 2 N log 2 N 4 = 2 log 2 N log 2 N 4
139 128 138 eqtrd φ N E = 2 log 2 N log 2 N 4
140 20 recnd φ log 2 N
141 140 exp1d φ log 2 N 1 = log 2 N
142 141 eqcomd φ log 2 N = log 2 N 1
143 142 oveq1d φ log 2 N log 2 N 4 = log 2 N 1 log 2 N 4
144 1nn0 1 0
145 144 a1i φ 1 0
146 140 131 145 expaddd φ log 2 N 1 + 4 = log 2 N 1 log 2 N 4
147 146 eqcomd φ log 2 N 1 log 2 N 4 = log 2 N 1 + 4
148 143 147 eqtrd φ log 2 N log 2 N 4 = log 2 N 1 + 4
149 148 oveq2d φ 2 log 2 N log 2 N 4 = 2 log 2 N 1 + 4
150 139 149 eqtrd φ N E = 2 log 2 N 1 + 4
151 4cn 4
152 ax-1cn 1
153 4p1e5 4 + 1 = 5
154 151 152 153 addcomli 1 + 4 = 5
155 154 a1i φ 1 + 4 = 5
156 155 oveq2d φ log 2 N 1 + 4 = log 2 N 5
157 156 oveq2d φ 2 log 2 N 1 + 4 = 2 log 2 N 5
158 150 157 eqtrd φ N E = 2 log 2 N 5
159 3re 3
160 159 a1i φ 3
161 0le1 0 1
162 161 a1i φ 0 1
163 1lt3 1 < 3
164 163 a1i φ 1 < 3
165 15 160 164 ltled φ 1 3
166 30 15 160 162 165 letrd φ 0 3
167 30 160 9 166 4 letrd φ 0 N
168 9 167 134 recxpcld φ N E
169 158 168 eqeltrrd φ 2 log 2 N 5
170 27 eleq1d φ B log 2 N 5
171 25 170 mpbird φ B
172 30 29 41 ltled φ 0 B
173 171 172 jca φ B 0 B
174 elnn0z B 0 B 0 B
175 173 174 sylibr φ B 0
176 11 175 reexpcld φ 2 B
177 9 14 elrpd φ N +
178 23 15 readdcld φ log 2 N 5 + 1
179 22 nn0zd φ 5
180 logb1 2 2 0 2 1 log 2 1 = 0
181 51 52 19 180 syl3anc φ log 2 1 = 0
182 181 30 eqeltrd φ log 2 1
183 30 leidd φ 0 0
184 181 eqcomd φ 0 = log 2 1
185 183 184 breqtrd φ 0 log 2 1
186 15 160 9 164 4 ltletrd φ 1 < N
187 1rp 1 +
188 187 a1i φ 1 +
189 logblt 2 2 1 + N + 1 < N log 2 1 < log 2 N
190 76 188 177 189 syl3anc φ 1 < N log 2 1 < log 2 N
191 186 190 mpbid φ log 2 1 < log 2 N
192 30 182 20 185 191 lelttrd φ 0 < log 2 N
193 20 179 192 3jca φ log 2 N 5 0 < log 2 N
194 expgt0 log 2 N 5 0 < log 2 N 0 < log 2 N 5
195 193 194 syl φ 0 < log 2 N 5
196 ltp1 log 2 N 5 log 2 N 5 < log 2 N 5 + 1
197 23 196 syl φ log 2 N 5 < log 2 N 5 + 1
198 30 23 178 195 197 lttrd φ 0 < log 2 N 5 + 1
199 11 13 178 198 19 relogbcld φ log 2 log 2 N 5 + 1
200 5 a1i φ C = log 2 log 2 N 5 + 1
201 200 eleq1d φ C log 2 log 2 N 5 + 1
202 199 201 mpbird φ C
203 20 resqcld φ log 2 N 2
204 6 a1i φ D = log 2 N 2
205 204 eleq1d φ D log 2 N 2
206 203 205 mpbird φ D
207 206 rehalfcld φ D 2
208 202 207 readdcld φ C + D 2
209 134 11 109 redivcld φ E 2
210 208 209 readdcld φ C + D 2 + E 2
211 177 210 rpcxpcld φ N C + D 2 + E 2 +
212 211 rpred φ N C + D 2 + E 2
213 1 2 3 4 aks4d1p1p2 φ A < N log 2 log 2 N 5 + 1 + log 2 N 2 2 + log 2 N 4 2
214 129 oveq1d φ log 2 N 4 2 = E 2
215 214 oveq2d φ log 2 log 2 N 5 + 1 + log 2 N 2 2 + log 2 N 4 2 = log 2 log 2 N 5 + 1 + log 2 N 2 2 + E 2
216 200 eqcomd φ log 2 log 2 N 5 + 1 = C
217 216 oveq1d φ log 2 log 2 N 5 + 1 + log 2 N 2 2 = C + log 2 N 2 2
218 204 eqcomd φ log 2 N 2 = D
219 218 oveq1d φ log 2 N 2 2 = D 2
220 219 oveq2d φ C + log 2 N 2 2 = C + D 2
221 217 220 eqtrd φ log 2 log 2 N 5 + 1 + log 2 N 2 2 = C + D 2
222 221 oveq1d φ log 2 log 2 N 5 + 1 + log 2 N 2 2 + E 2 = C + D 2 + E 2
223 215 222 eqtrd φ log 2 log 2 N 5 + 1 + log 2 N 2 2 + log 2 N 4 2 = C + D 2 + E 2
224 223 oveq2d φ N log 2 log 2 N 5 + 1 + log 2 N 2 2 + log 2 N 4 2 = N C + D 2 + E 2
225 213 224 breqtrd φ A < N C + D 2 + E 2
226 202 recnd φ C
227 226 108 109 divcan3d φ 2 C 2 = C
228 227 eqcomd φ C = 2 C 2
229 228 oveq1d φ C + D 2 = 2 C 2 + D 2
230 11 202 remulcld φ 2 C
231 230 recnd φ 2 C
232 206 recnd φ D
233 231 232 51 109 divdird φ 2 C + D 2 = 2 C 2 + D 2
234 233 eqcomd φ 2 C 2 + D 2 = 2 C + D 2
235 229 234 eqtrd φ C + D 2 = 2 C + D 2
236 230 206 readdcld φ 2 C + D
237 236 134 78 lediv1d φ 2 C + D E 2 C + D 2 E 2
238 8 237 mpbid φ 2 C + D 2 E 2
239 235 238 eqbrtrd φ C + D 2 E 2
240 208 209 209 239 leadd1dd φ C + D 2 + E 2 E 2 + E 2
241 135 2halvesd φ E 2 + E 2 = E
242 240 241 breqtrd φ C + D 2 + E 2 E
243 9 186 210 134 cxpled φ C + D 2 + E 2 E N C + D 2 + E 2 N E
244 242 243 mpbid φ N C + D 2 + E 2 N E
245 105 212 168 225 244 ltletrd φ A < N E
246 245 158 breqtrd φ A < 2 log 2 N 5
247 1le2 1 2
248 247 a1i φ 1 2
249 175 nn0red φ B
250 27 eqcomd φ log 2 N 5 = B
251 38 250 breqtrd φ log 2 N 5 B
252 11 248 23 249 251 cxplead φ 2 log 2 N 5 2 B
253 cxpexp 2 B 0 2 B = 2 B
254 108 175 253 syl2anc φ 2 B = 2 B
255 252 254 breqtrd φ 2 log 2 N 5 2 B
256 105 169 176 246 255 ltletrd φ A < 2 B