| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p1p5.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
aks4d1p1p5.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p1p5.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
|
aks4d1p1p5.4 |
⊢ ( 𝜑 → 4 ≤ 𝑁 ) |
| 5 |
|
aks4d1p1p5.5 |
⊢ 𝐶 = ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) |
| 6 |
|
aks4d1p1p5.6 |
⊢ 𝐷 = ( ( 2 logb 𝑁 ) ↑ 2 ) |
| 7 |
|
aks4d1p1p5.7 |
⊢ 𝐸 = ( ( 2 logb 𝑁 ) ↑ 4 ) |
| 8 |
|
3re |
⊢ 3 ∈ ℝ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 10 |
|
4re |
⊢ 4 ∈ ℝ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 12 |
1
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 13 |
9
|
lep1d |
⊢ ( 𝜑 → 3 ≤ ( 3 + 1 ) ) |
| 14 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 15 |
13 14
|
breqtrdi |
⊢ ( 𝜑 → 3 ≤ 4 ) |
| 16 |
9 11 12 15 4
|
letrd |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 17 |
|
2re |
⊢ 2 ∈ ℝ |
| 18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 2 ∈ ℝ ) |
| 19 |
|
2pos |
⊢ 0 < 2 |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < 2 ) |
| 21 |
|
elicc2 |
⊢ ( ( 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ) |
| 22 |
11 12 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ) |
| 23 |
22
|
biimpd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) → ( 𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) |
| 25 |
24
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 26 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 ∈ ℝ ) |
| 28 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 4 ∈ ℝ ) |
| 29 |
|
4pos |
⊢ 0 < 4 |
| 30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < 4 ) |
| 31 |
24
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 4 ≤ 𝑥 ) |
| 32 |
27 28 25 30 31
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < 𝑥 ) |
| 33 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 34 |
|
1lt2 |
⊢ 1 < 2 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 36 |
33 35
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 37 |
36
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 2 ≠ 1 ) |
| 39 |
18 20 25 32 38
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 2 logb 𝑥 ) ∈ ℝ ) |
| 40 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 5 ∈ ℕ0 ) |
| 42 |
39 41
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( ( 2 logb 𝑥 ) ↑ 5 ) ∈ ℝ ) |
| 43 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 1 ∈ ℝ ) |
| 44 |
42 43
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ∈ ℝ ) |
| 45 |
27 43
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 0 + 1 ) ∈ ℝ ) |
| 46 |
27
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < ( 0 + 1 ) ) |
| 47 |
41
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 5 ∈ ℤ ) |
| 48 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 49 |
48 18
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 2 ∈ ℂ ) |
| 50 |
27 20
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 2 ≠ 0 ) |
| 51 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
| 52 |
49 50 38 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 2 logb 1 ) = 0 ) |
| 53 |
|
1lt4 |
⊢ 1 < 4 |
| 54 |
53
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 1 < 4 ) |
| 55 |
43 28 25 54 31
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 1 < 𝑥 ) |
| 56 |
|
2z |
⊢ 2 ∈ ℤ |
| 57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 2 ∈ ℤ ) |
| 58 |
57
|
uzidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
| 59 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 60 |
59
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 1 ∈ ℝ+ ) |
| 61 |
25 32
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 𝑥 ∈ ℝ+ ) |
| 62 |
|
logblt |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 1 < 𝑥 ↔ ( 2 logb 1 ) < ( 2 logb 𝑥 ) ) ) |
| 63 |
58 60 61 62
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 1 < 𝑥 ↔ ( 2 logb 1 ) < ( 2 logb 𝑥 ) ) ) |
| 64 |
55 63
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 2 logb 1 ) < ( 2 logb 𝑥 ) ) |
| 65 |
52 64
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < ( 2 logb 𝑥 ) ) |
| 66 |
|
expgt0 |
⊢ ( ( ( 2 logb 𝑥 ) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < ( 2 logb 𝑥 ) ) → 0 < ( ( 2 logb 𝑥 ) ↑ 5 ) ) |
| 67 |
39 47 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < ( ( 2 logb 𝑥 ) ↑ 5 ) ) |
| 68 |
27 42 43 67
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 0 + 1 ) < ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) |
| 69 |
27 45 44 46 68
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) |
| 70 |
18 20 44 69 38
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℝ ) |
| 71 |
18 70
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) ∈ ℝ ) |
| 72 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 ∈ ℝ ) |
| 73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 𝑥 ∈ ( 4 [,] 𝑁 ) ) |
| 74 |
11 12
|
jca |
⊢ ( 𝜑 → ( 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 76 |
75 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) ) |
| 77 |
73 76
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 𝑥 ∈ ℝ ∧ 4 ≤ 𝑥 ∧ 𝑥 ≤ 𝑁 ) ) |
| 78 |
77
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 4 ≤ 𝑥 ) |
| 79 |
72 28 25 30 78
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 0 < 𝑥 ) |
| 80 |
18 20 25 79 38
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( 2 logb 𝑥 ) ∈ ℝ ) |
| 81 |
80
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( ( 2 logb 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 82 |
71 81
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ∈ ℝ ) |
| 83 |
82
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) : ( 4 [,] 𝑁 ) ⟶ ℝ ) |
| 84 |
48
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 85 |
|
3lt4 |
⊢ 3 < 4 |
| 86 |
85
|
a1i |
⊢ ( 𝜑 → 3 < 4 ) |
| 87 |
12 33
|
readdcld |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ ) |
| 88 |
12
|
ltp1d |
⊢ ( 𝜑 → 𝑁 < ( 𝑁 + 1 ) ) |
| 89 |
11 12 87 4 88
|
lelttrd |
⊢ ( 𝜑 → 4 < ( 𝑁 + 1 ) ) |
| 90 |
86 89
|
jca |
⊢ ( 𝜑 → ( 3 < 4 ∧ 4 < ( 𝑁 + 1 ) ) ) |
| 91 |
9
|
rexrd |
⊢ ( 𝜑 → 3 ∈ ℝ* ) |
| 92 |
87
|
rexrd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ* ) |
| 93 |
11
|
rexrd |
⊢ ( 𝜑 → 4 ∈ ℝ* ) |
| 94 |
|
elioo5 |
⊢ ( ( 3 ∈ ℝ* ∧ ( 𝑁 + 1 ) ∈ ℝ* ∧ 4 ∈ ℝ* ) → ( 4 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↔ ( 3 < 4 ∧ 4 < ( 𝑁 + 1 ) ) ) ) |
| 95 |
91 92 93 94
|
syl3anc |
⊢ ( 𝜑 → ( 4 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↔ ( 3 < 4 ∧ 4 < ( 𝑁 + 1 ) ) ) ) |
| 96 |
90 95
|
mpbird |
⊢ ( 𝜑 → 4 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 97 |
9 11 12 86 4
|
ltletrd |
⊢ ( 𝜑 → 3 < 𝑁 ) |
| 98 |
97 88
|
jca |
⊢ ( 𝜑 → ( 3 < 𝑁 ∧ 𝑁 < ( 𝑁 + 1 ) ) ) |
| 99 |
12
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 100 |
|
elioo5 |
⊢ ( ( 3 ∈ ℝ* ∧ ( 𝑁 + 1 ) ∈ ℝ* ∧ 𝑁 ∈ ℝ* ) → ( 𝑁 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↔ ( 3 < 𝑁 ∧ 𝑁 < ( 𝑁 + 1 ) ) ) ) |
| 101 |
91 92 99 100
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↔ ( 3 < 𝑁 ∧ 𝑁 < ( 𝑁 + 1 ) ) ) ) |
| 102 |
98 101
|
mpbird |
⊢ ( 𝜑 → 𝑁 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 103 |
|
iccssioo2 |
⊢ ( ( 4 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ∧ 𝑁 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 4 [,] 𝑁 ) ⊆ ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 104 |
96 102 103
|
syl2anc |
⊢ ( 𝜑 → ( 4 [,] 𝑁 ) ⊆ ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 105 |
104
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ↾ ( 4 [,] 𝑁 ) ) = ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) |
| 106 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ∈ ℂ ) |
| 107 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ∈ ℝ ) |
| 108 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < 2 ) |
| 109 |
|
elioore |
⊢ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) → 𝑥 ∈ ℝ ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 𝑥 ∈ ℝ ) |
| 111 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 ∈ ℝ ) |
| 112 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 3 ∈ ℝ ) |
| 113 |
|
3pos |
⊢ 0 < 3 |
| 114 |
113
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < 3 ) |
| 115 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) → ( 3 < 𝑥 ∧ 𝑥 < ( 𝑁 + 1 ) ) ) |
| 116 |
|
simpl |
⊢ ( ( 3 < 𝑥 ∧ 𝑥 < ( 𝑁 + 1 ) ) → 3 < 𝑥 ) |
| 117 |
115 116
|
syl |
⊢ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) → 3 < 𝑥 ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 3 < 𝑥 ) |
| 119 |
111 112 110 114 118
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < 𝑥 ) |
| 120 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ≠ 1 ) |
| 121 |
107 108 110 119 120
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 logb 𝑥 ) ∈ ℝ ) |
| 122 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 5 ∈ ℕ0 ) |
| 123 |
121 122
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 logb 𝑥 ) ↑ 5 ) ∈ ℝ ) |
| 124 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 1 ∈ ℝ ) |
| 125 |
123 124
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ∈ ℝ ) |
| 126 |
111 124
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 0 + 1 ) ∈ ℝ ) |
| 127 |
111
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < ( 0 + 1 ) ) |
| 128 |
122
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 5 ∈ ℤ ) |
| 129 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 1 < 2 ) |
| 130 |
|
2lt3 |
⊢ 2 < 3 |
| 131 |
130
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 < 3 ) |
| 132 |
124 107 112 129 131
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 1 < 3 ) |
| 133 |
124 112 110 132 118
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 1 < 𝑥 ) |
| 134 |
110 119
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 135 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 136 |
135
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ∈ ℝ+ ) |
| 137 |
134 136 129
|
jca32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 𝑥 ∈ ℝ+ ∧ ( 2 ∈ ℝ+ ∧ 1 < 2 ) ) ) |
| 138 |
|
logbgt0b |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 2 ∈ ℝ+ ∧ 1 < 2 ) ) → ( 0 < ( 2 logb 𝑥 ) ↔ 1 < 𝑥 ) ) |
| 139 |
137 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 0 < ( 2 logb 𝑥 ) ↔ 1 < 𝑥 ) ) |
| 140 |
133 139
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < ( 2 logb 𝑥 ) ) |
| 141 |
121 128 140 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < ( ( 2 logb 𝑥 ) ↑ 5 ) ) |
| 142 |
111 123 124 141
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 0 + 1 ) < ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) |
| 143 |
111 126 125 127 142
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 0 < ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) |
| 144 |
124 129
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 1 ≠ 2 ) |
| 145 |
144
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ≠ 1 ) |
| 146 |
107 108 125 143 145
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℝ ) |
| 147 |
146
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℂ ) |
| 148 |
106 147
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) ∈ ℂ ) |
| 149 |
48 121
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 logb 𝑥 ) ∈ ℂ ) |
| 150 |
149
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 logb 𝑥 ) ↑ 2 ) ∈ ℂ ) |
| 151 |
148 150
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ∈ ℂ ) |
| 152 |
151
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) : ( 3 (,) ( 𝑁 + 1 ) ) ⟶ ℂ ) |
| 153 |
|
ioossre |
⊢ ( 3 (,) ( 𝑁 + 1 ) ) ⊆ ℝ |
| 154 |
153
|
a1i |
⊢ ( 𝜑 → ( 3 (,) ( 𝑁 + 1 ) ) ⊆ ℝ ) |
| 155 |
84 152 154
|
3jca |
⊢ ( 𝜑 → ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) : ( 3 (,) ( 𝑁 + 1 ) ) ⟶ ℂ ∧ ( 3 (,) ( 𝑁 + 1 ) ) ⊆ ℝ ) ) |
| 156 |
136
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( log ‘ 2 ) ∈ ℝ ) |
| 157 |
125 156
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
| 158 |
48 123
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 logb 𝑥 ) ↑ 5 ) ∈ ℂ ) |
| 159 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 1 ∈ ℂ ) |
| 160 |
158 159
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ∈ ℂ ) |
| 161 |
111 108
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ≠ 0 ) |
| 162 |
106 161
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( log ‘ 2 ) ∈ ℂ ) |
| 163 |
111 143
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ≠ 0 ) |
| 164 |
|
loggt0b |
⊢ ( 2 ∈ ℝ+ → ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) ) |
| 165 |
135 164
|
ax-mp |
⊢ ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) |
| 166 |
35 165
|
sylibr |
⊢ ( 𝜑 → 0 < ( log ‘ 2 ) ) |
| 167 |
26 166
|
ltned |
⊢ ( 𝜑 → 0 ≠ ( log ‘ 2 ) ) |
| 168 |
167
|
necomd |
⊢ ( 𝜑 → ( log ‘ 2 ) ≠ 0 ) |
| 169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( log ‘ 2 ) ≠ 0 ) |
| 170 |
160 162 163 169
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ≠ 0 ) |
| 171 |
124 157 170
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) ∈ ℝ ) |
| 172 |
|
5re |
⊢ 5 ∈ ℝ |
| 173 |
172
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 5 ∈ ℝ ) |
| 174 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 175 |
174
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 4 ∈ ℕ0 ) |
| 176 |
121 175
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 logb 𝑥 ) ↑ 4 ) ∈ ℝ ) |
| 177 |
173 176
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ℝ ) |
| 178 |
110 156
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 𝑥 · ( log ‘ 2 ) ) ∈ ℝ ) |
| 179 |
48 110
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 𝑥 ∈ ℂ ) |
| 180 |
111 119
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 𝑥 ≠ 0 ) |
| 181 |
179 162 180 169
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 𝑥 · ( log ‘ 2 ) ) ≠ 0 ) |
| 182 |
124 178 181
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ∈ ℝ ) |
| 183 |
177 182
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ∈ ℝ ) |
| 184 |
183 111
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ∈ ℝ ) |
| 185 |
171 184
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ∈ ℝ ) |
| 186 |
107 185
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) ∈ ℝ ) |
| 187 |
156
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( log ‘ 2 ) ↑ 2 ) ∈ ℝ ) |
| 188 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 2 ∈ ℤ ) |
| 189 |
162 169 188
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( log ‘ 2 ) ↑ 2 ) ≠ 0 ) |
| 190 |
107 187 189
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
| 191 |
134
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 192 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 193 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 194 |
192 193
|
eqeltri |
⊢ ( 2 − 1 ) ∈ ℕ0 |
| 195 |
194
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 2 − 1 ) ∈ ℕ0 ) |
| 196 |
191 195
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) ∈ ℝ ) |
| 197 |
196 110 180
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ∈ ℝ ) |
| 198 |
190 197
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ∈ ℝ ) |
| 199 |
186 198
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ∈ ℝ ) |
| 200 |
199
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ∈ ℝ ) |
| 201 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 3 (,) ( 𝑁 + 1 ) ) |
| 202 |
201
|
fnmptf |
⊢ ( ∀ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ∈ ℝ → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 203 |
200 202
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 204 |
9
|
leidd |
⊢ ( 𝜑 → 3 ≤ 3 ) |
| 205 |
12
|
lep1d |
⊢ ( 𝜑 → 𝑁 ≤ ( 𝑁 + 1 ) ) |
| 206 |
9 12 87 16 205
|
letrd |
⊢ ( 𝜑 → 3 ≤ ( 𝑁 + 1 ) ) |
| 207 |
9 87 204 206
|
aks4d1p1p6 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) = ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) ) |
| 208 |
207
|
fneq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ↔ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) ) |
| 209 |
203 208
|
mpbird |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 210 |
209
|
fndmd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) = ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 211 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) : ( 3 (,) ( 𝑁 + 1 ) ) ⟶ ℂ ∧ ( 3 (,) ( 𝑁 + 1 ) ) ⊆ ℝ ) ∧ dom ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) = ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) ) |
| 212 |
155 210 211
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) ) |
| 213 |
|
rescncf |
⊢ ( ( 4 [,] 𝑁 ) ⊆ ( 3 (,) ( 𝑁 + 1 ) ) → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ↾ ( 4 [,] 𝑁 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) ) |
| 214 |
104 213
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ↾ ( 4 [,] 𝑁 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) ) |
| 215 |
212 214
|
mpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ↾ ( 4 [,] 𝑁 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) |
| 216 |
105 215
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) |
| 217 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) → ( ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) : ( 4 [,] 𝑁 ) ⟶ ℝ ) ) |
| 218 |
84 216 217
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) : ( 4 [,] 𝑁 ) ⟶ ℝ ) ) |
| 219 |
83 218
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℝ ) ) |
| 220 |
174
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → 4 ∈ ℕ0 ) |
| 221 |
39 220
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 [,] 𝑁 ) ) → ( ( 2 logb 𝑥 ) ↑ 4 ) ∈ ℝ ) |
| 222 |
221
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) : ( 4 [,] 𝑁 ) ⟶ ℝ ) |
| 223 |
104
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ↾ ( 4 [,] 𝑁 ) ) = ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) |
| 224 |
48 176
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 2 logb 𝑥 ) ↑ 4 ) ∈ ℂ ) |
| 225 |
224
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) : ( 3 (,) ( 𝑁 + 1 ) ) ⟶ ℂ ) |
| 226 |
84 225 154
|
3jca |
⊢ ( 𝜑 → ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) : ( 3 (,) ( 𝑁 + 1 ) ) ⟶ ℂ ∧ ( 3 (,) ( 𝑁 + 1 ) ) ⊆ ℝ ) ) |
| 227 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 4 ∈ ℝ ) |
| 228 |
156 175
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( log ‘ 2 ) ↑ 4 ) ∈ ℝ ) |
| 229 |
|
4z |
⊢ 4 ∈ ℤ |
| 230 |
229
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → 4 ∈ ℤ ) |
| 231 |
162 169 230
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( log ‘ 2 ) ↑ 4 ) ≠ 0 ) |
| 232 |
227 228 231
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) ∈ ℝ ) |
| 233 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
| 234 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 235 |
233 234
|
eqeltri |
⊢ ( 4 − 1 ) ∈ ℕ0 |
| 236 |
235
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 4 − 1 ) ∈ ℕ0 ) |
| 237 |
191 236
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) ∈ ℝ ) |
| 238 |
237 110 180
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ∈ ℝ ) |
| 239 |
232 238
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ) → ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ∈ ℝ ) |
| 240 |
239
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ∈ ℝ ) |
| 241 |
201
|
fnmptf |
⊢ ( ∀ 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ∈ ℝ → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 242 |
240 241
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 243 |
113
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 244 |
|
eqid |
⊢ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) = ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) |
| 245 |
|
eqid |
⊢ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) |
| 246 |
|
eqid |
⊢ ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) = ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) |
| 247 |
|
4nn |
⊢ 4 ∈ ℕ |
| 248 |
247
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℕ ) |
| 249 |
9 87 243 206 244 245 246 248
|
dvrelogpow2b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) = ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) ) |
| 250 |
249
|
fneq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ↔ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) ) |
| 251 |
242 250
|
mpbird |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) Fn ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 252 |
251
|
fndmd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) = ( 3 (,) ( 𝑁 + 1 ) ) ) |
| 253 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) : ( 3 (,) ( 𝑁 + 1 ) ) ⟶ ℂ ∧ ( 3 (,) ( 𝑁 + 1 ) ) ⊆ ℝ ) ∧ dom ( ℝ D ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) = ( 3 (,) ( 𝑁 + 1 ) ) ) → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) ) |
| 254 |
226 252 253
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) ) |
| 255 |
|
rescncf |
⊢ ( ( 4 [,] 𝑁 ) ⊆ ( 3 (,) ( 𝑁 + 1 ) ) → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ↾ ( 4 [,] 𝑁 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) ) |
| 256 |
104 255
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 3 (,) ( 𝑁 + 1 ) ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ↾ ( 4 [,] 𝑁 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) ) |
| 257 |
254 256
|
mpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 3 (,) ( 𝑁 + 1 ) ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ↾ ( 4 [,] 𝑁 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) |
| 258 |
223 257
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) |
| 259 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℂ ) ) → ( ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) : ( 4 [,] 𝑁 ) ⟶ ℝ ) ) |
| 260 |
84 258 259
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℝ ) ↔ ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) : ( 4 [,] 𝑁 ) ⟶ ℝ ) ) |
| 261 |
222 260
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 [,] 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ( ( 4 [,] 𝑁 ) –cn→ ℝ ) ) |
| 262 |
11 12 15 4
|
aks4d1p1p6 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) = ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) ) |
| 263 |
29
|
a1i |
⊢ ( 𝜑 → 0 < 4 ) |
| 264 |
|
eqid |
⊢ ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) = ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) |
| 265 |
|
eqid |
⊢ ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) |
| 266 |
11 12 263 4 264 265 246 248
|
dvrelogpow2b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) = ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) ) |
| 267 |
233
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → ( 4 − 1 ) = 3 ) |
| 268 |
267
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) = ( ( log ‘ 𝑥 ) ↑ 3 ) ) |
| 269 |
268
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) = ( ( ( log ‘ 𝑥 ) ↑ 3 ) / 𝑥 ) ) |
| 270 |
269
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) = ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ 3 ) / 𝑥 ) ) ) |
| 271 |
270
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 4 − 1 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ 3 ) / 𝑥 ) ) ) ) |
| 272 |
266 271
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) = ( 𝑥 ∈ ( 4 (,) 𝑁 ) ↦ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ 3 ) / 𝑥 ) ) ) ) |
| 273 |
|
elioore |
⊢ ( 𝑥 ∈ ( 4 (,) 𝑁 ) → 𝑥 ∈ ℝ ) |
| 274 |
273
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → 𝑥 ∈ ℝ ) |
| 275 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → 4 ∈ ℝ ) |
| 276 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 4 (,) 𝑁 ) → ( 4 < 𝑥 ∧ 𝑥 < 𝑁 ) ) |
| 277 |
276
|
simpld |
⊢ ( 𝑥 ∈ ( 4 (,) 𝑁 ) → 4 < 𝑥 ) |
| 278 |
277
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → 4 < 𝑥 ) |
| 279 |
275 274 278
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → 4 ≤ 𝑥 ) |
| 280 |
274 279
|
aks4d1p1p7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 4 (,) 𝑁 ) ) → ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ≤ ( ( 4 / ( ( log ‘ 2 ) ↑ 4 ) ) · ( ( ( log ‘ 𝑥 ) ↑ 3 ) / 𝑥 ) ) ) |
| 281 |
|
oveq2 |
⊢ ( 𝑥 = 4 → ( 2 logb 𝑥 ) = ( 2 logb 4 ) ) |
| 282 |
281
|
oveq1d |
⊢ ( 𝑥 = 4 → ( ( 2 logb 𝑥 ) ↑ 5 ) = ( ( 2 logb 4 ) ↑ 5 ) ) |
| 283 |
282
|
oveq1d |
⊢ ( 𝑥 = 4 → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) = ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) |
| 284 |
283
|
oveq2d |
⊢ ( 𝑥 = 4 → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) = ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) |
| 285 |
284
|
oveq2d |
⊢ ( 𝑥 = 4 → ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) = ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ) |
| 286 |
281
|
oveq1d |
⊢ ( 𝑥 = 4 → ( ( 2 logb 𝑥 ) ↑ 2 ) = ( ( 2 logb 4 ) ↑ 2 ) ) |
| 287 |
285 286
|
oveq12d |
⊢ ( 𝑥 = 4 → ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) = ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 4 ) ↑ 2 ) ) ) |
| 288 |
281
|
oveq1d |
⊢ ( 𝑥 = 4 → ( ( 2 logb 𝑥 ) ↑ 4 ) = ( ( 2 logb 4 ) ↑ 4 ) ) |
| 289 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2 logb 𝑥 ) = ( 2 logb 𝑁 ) ) |
| 290 |
289
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑥 ) ↑ 5 ) = ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 291 |
290
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) = ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) |
| 292 |
291
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) = ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) ) |
| 293 |
292
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) = ( 2 · ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) ) ) |
| 294 |
5
|
a1i |
⊢ ( 𝑥 = 𝑁 → 𝐶 = ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) ) |
| 295 |
294
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2 · 𝐶 ) = ( 2 · ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) ) ) |
| 296 |
295
|
eqcomd |
⊢ ( 𝑥 = 𝑁 → ( 2 · ( 2 logb ( ( ( 2 logb 𝑁 ) ↑ 5 ) + 1 ) ) ) = ( 2 · 𝐶 ) ) |
| 297 |
293 296
|
eqtrd |
⊢ ( 𝑥 = 𝑁 → ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) = ( 2 · 𝐶 ) ) |
| 298 |
289
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑥 ) ↑ 2 ) = ( ( 2 logb 𝑁 ) ↑ 2 ) ) |
| 299 |
6
|
a1i |
⊢ ( 𝑥 = 𝑁 → 𝐷 = ( ( 2 logb 𝑁 ) ↑ 2 ) ) |
| 300 |
299
|
eqcomd |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑁 ) ↑ 2 ) = 𝐷 ) |
| 301 |
298 300
|
eqtrd |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑥 ) ↑ 2 ) = 𝐷 ) |
| 302 |
297 301
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) = ( ( 2 · 𝐶 ) + 𝐷 ) ) |
| 303 |
289
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑥 ) ↑ 4 ) = ( ( 2 logb 𝑁 ) ↑ 4 ) ) |
| 304 |
7
|
a1i |
⊢ ( 𝑥 = 𝑁 → 𝐸 = ( ( 2 logb 𝑁 ) ↑ 4 ) ) |
| 305 |
304
|
eqcomd |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑁 ) ↑ 4 ) = 𝐸 ) |
| 306 |
303 305
|
eqtrd |
⊢ ( 𝑥 = 𝑁 → ( ( 2 logb 𝑥 ) ↑ 4 ) = 𝐸 ) |
| 307 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 308 |
307
|
oveq2i |
⊢ ( 2 logb ( 2 ↑ 2 ) ) = ( 2 logb 4 ) |
| 309 |
308
|
a1i |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 2 ) ) = ( 2 logb 4 ) ) |
| 310 |
309
|
eqcomd |
⊢ ( 𝜑 → ( 2 logb 4 ) = ( 2 logb ( 2 ↑ 2 ) ) ) |
| 311 |
135
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 312 |
56
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 313 |
|
relogbexp |
⊢ ( ( 2 ∈ ℝ+ ∧ 2 ≠ 1 ∧ 2 ∈ ℤ ) → ( 2 logb ( 2 ↑ 2 ) ) = 2 ) |
| 314 |
311 37 312 313
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 2 ) ) = 2 ) |
| 315 |
310 314
|
eqtrd |
⊢ ( 𝜑 → ( 2 logb 4 ) = 2 ) |
| 316 |
315
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 5 ) = ( 2 ↑ 5 ) ) |
| 317 |
316
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) = ( ( 2 ↑ 5 ) + 1 ) ) |
| 318 |
317
|
oveq2d |
⊢ ( 𝜑 → ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) = ( 2 logb ( ( 2 ↑ 5 ) + 1 ) ) ) |
| 319 |
17
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 320 |
319
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 321 |
315 319
|
eqeltrd |
⊢ ( 𝜑 → ( 2 logb 4 ) ∈ ℝ ) |
| 322 |
40
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
| 323 |
321 322
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 5 ) ∈ ℝ ) |
| 324 |
316 323
|
eqeltrrd |
⊢ ( 𝜑 → ( 2 ↑ 5 ) ∈ ℝ ) |
| 325 |
324 33
|
readdcld |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + 1 ) ∈ ℝ ) |
| 326 |
322
|
nn0zd |
⊢ ( 𝜑 → 5 ∈ ℤ ) |
| 327 |
19
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 328 |
327 315
|
breqtrrd |
⊢ ( 𝜑 → 0 < ( 2 logb 4 ) ) |
| 329 |
321 326 328
|
3jca |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < ( 2 logb 4 ) ) ) |
| 330 |
|
expgt0 |
⊢ ( ( ( 2 logb 4 ) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < ( 2 logb 4 ) ) → 0 < ( ( 2 logb 4 ) ↑ 5 ) ) |
| 331 |
329 330
|
syl |
⊢ ( 𝜑 → 0 < ( ( 2 logb 4 ) ↑ 5 ) ) |
| 332 |
331 316
|
breqtrd |
⊢ ( 𝜑 → 0 < ( 2 ↑ 5 ) ) |
| 333 |
324
|
ltp1d |
⊢ ( 𝜑 → ( 2 ↑ 5 ) < ( ( 2 ↑ 5 ) + 1 ) ) |
| 334 |
26 324 325 332 333
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 ↑ 5 ) + 1 ) ) |
| 335 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
| 336 |
335
|
a1i |
⊢ ( 𝜑 → 6 ∈ ℕ0 ) |
| 337 |
319 336
|
reexpcld |
⊢ ( 𝜑 → ( 2 ↑ 6 ) ∈ ℝ ) |
| 338 |
336
|
nn0zd |
⊢ ( 𝜑 → 6 ∈ ℤ ) |
| 339 |
|
expgt0 |
⊢ ( ( 2 ∈ ℝ ∧ 6 ∈ ℤ ∧ 0 < 2 ) → 0 < ( 2 ↑ 6 ) ) |
| 340 |
319 338 327 339
|
syl3anc |
⊢ ( 𝜑 → 0 < ( 2 ↑ 6 ) ) |
| 341 |
324 324
|
readdcld |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ∈ ℝ ) |
| 342 |
33 319 35
|
ltled |
⊢ ( 𝜑 → 1 ≤ 2 ) |
| 343 |
319 322 342
|
expge1d |
⊢ ( 𝜑 → 1 ≤ ( 2 ↑ 5 ) ) |
| 344 |
33 324 324 343
|
leadd2dd |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + 1 ) ≤ ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ) |
| 345 |
341
|
leidd |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ≤ ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ) |
| 346 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
| 347 |
346
|
a1i |
⊢ ( 𝜑 → 6 = ( 5 + 1 ) ) |
| 348 |
347
|
oveq2d |
⊢ ( 𝜑 → ( 2 ↑ 6 ) = ( 2 ↑ ( 5 + 1 ) ) ) |
| 349 |
|
2cn |
⊢ 2 ∈ ℂ |
| 350 |
349
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 351 |
193
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 352 |
350 351 322
|
expaddd |
⊢ ( 𝜑 → ( 2 ↑ ( 5 + 1 ) ) = ( ( 2 ↑ 5 ) · ( 2 ↑ 1 ) ) ) |
| 353 |
348 352
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ 6 ) = ( ( 2 ↑ 5 ) · ( 2 ↑ 1 ) ) ) |
| 354 |
350
|
exp1d |
⊢ ( 𝜑 → ( 2 ↑ 1 ) = 2 ) |
| 355 |
354
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) · ( 2 ↑ 1 ) ) = ( ( 2 ↑ 5 ) · 2 ) ) |
| 356 |
353 355
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ 6 ) = ( ( 2 ↑ 5 ) · 2 ) ) |
| 357 |
48 324
|
sselid |
⊢ ( 𝜑 → ( 2 ↑ 5 ) ∈ ℂ ) |
| 358 |
357
|
times2d |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) · 2 ) = ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ) |
| 359 |
356 358
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ 6 ) = ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ) |
| 360 |
359
|
eqcomd |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) = ( 2 ↑ 6 ) ) |
| 361 |
345 360
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + ( 2 ↑ 5 ) ) ≤ ( 2 ↑ 6 ) ) |
| 362 |
325 341 337 344 361
|
letrd |
⊢ ( 𝜑 → ( ( 2 ↑ 5 ) + 1 ) ≤ ( 2 ↑ 6 ) ) |
| 363 |
312 320 325 334 337 340 362
|
logblebd |
⊢ ( 𝜑 → ( 2 logb ( ( 2 ↑ 5 ) + 1 ) ) ≤ ( 2 logb ( 2 ↑ 6 ) ) ) |
| 364 |
311 37 338
|
relogbexpd |
⊢ ( 𝜑 → ( 2 logb ( 2 ↑ 6 ) ) = 6 ) |
| 365 |
363 364
|
breqtrd |
⊢ ( 𝜑 → ( 2 logb ( ( 2 ↑ 5 ) + 1 ) ) ≤ 6 ) |
| 366 |
318 365
|
eqbrtrd |
⊢ ( 𝜑 → ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ≤ 6 ) |
| 367 |
|
6t2e12 |
⊢ ( 6 · 2 ) = ; 1 2 |
| 368 |
|
6cn |
⊢ 6 ∈ ℂ |
| 369 |
368
|
a1i |
⊢ ( 𝜑 → 6 ∈ ℂ ) |
| 370 |
|
2nn |
⊢ 2 ∈ ℕ |
| 371 |
193 370
|
decnncl |
⊢ ; 1 2 ∈ ℕ |
| 372 |
371
|
a1i |
⊢ ( 𝜑 → ; 1 2 ∈ ℕ ) |
| 373 |
372
|
nnred |
⊢ ( 𝜑 → ; 1 2 ∈ ℝ ) |
| 374 |
373
|
recnd |
⊢ ( 𝜑 → ; 1 2 ∈ ℂ ) |
| 375 |
26 327
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 376 |
369 350 374 375
|
ldiv |
⊢ ( 𝜑 → ( ( 6 · 2 ) = ; 1 2 ↔ 6 = ( ; 1 2 / 2 ) ) ) |
| 377 |
367 376
|
mpbii |
⊢ ( 𝜑 → 6 = ( ; 1 2 / 2 ) ) |
| 378 |
366 377
|
breqtrd |
⊢ ( 𝜑 → ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ≤ ( ; 1 2 / 2 ) ) |
| 379 |
323 33
|
readdcld |
⊢ ( 𝜑 → ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ∈ ℝ ) |
| 380 |
26 33
|
readdcld |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℝ ) |
| 381 |
26
|
ltp1d |
⊢ ( 𝜑 → 0 < ( 0 + 1 ) ) |
| 382 |
26 323 33 331
|
ltadd1dd |
⊢ ( 𝜑 → ( 0 + 1 ) < ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) |
| 383 |
26 380 379 381 382
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) |
| 384 |
319 327 379 383 37
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ∈ ℝ ) |
| 385 |
384 373 311
|
lemuldiv2d |
⊢ ( 𝜑 → ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ≤ ; 1 2 ↔ ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ≤ ( ; 1 2 / 2 ) ) ) |
| 386 |
378 385
|
mpbird |
⊢ ( 𝜑 → ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ≤ ; 1 2 ) |
| 387 |
315
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 2 ) = ( 2 ↑ 2 ) ) |
| 388 |
387 307
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 2 ) = 4 ) |
| 389 |
388
|
oveq2d |
⊢ ( 𝜑 → ( ; 1 6 − ( ( 2 logb 4 ) ↑ 2 ) ) = ( ; 1 6 − 4 ) ) |
| 390 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 391 |
|
eqid |
⊢ ; 1 2 = ; 1 2 |
| 392 |
|
4cn |
⊢ 4 ∈ ℂ |
| 393 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
| 394 |
392 349 393
|
addcomli |
⊢ ( 2 + 4 ) = 6 |
| 395 |
193 390 174 391 394
|
decaddi |
⊢ ( ; 1 2 + 4 ) = ; 1 6 |
| 396 |
392
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℂ ) |
| 397 |
|
6nn |
⊢ 6 ∈ ℕ |
| 398 |
193 397
|
decnncl |
⊢ ; 1 6 ∈ ℕ |
| 399 |
398
|
a1i |
⊢ ( 𝜑 → ; 1 6 ∈ ℕ ) |
| 400 |
399
|
nnred |
⊢ ( 𝜑 → ; 1 6 ∈ ℝ ) |
| 401 |
48 400
|
sselid |
⊢ ( 𝜑 → ; 1 6 ∈ ℂ ) |
| 402 |
374 396 401
|
addlsub |
⊢ ( 𝜑 → ( ( ; 1 2 + 4 ) = ; 1 6 ↔ ; 1 2 = ( ; 1 6 − 4 ) ) ) |
| 403 |
395 402
|
mpbii |
⊢ ( 𝜑 → ; 1 2 = ( ; 1 6 − 4 ) ) |
| 404 |
389 403
|
eqtr4d |
⊢ ( 𝜑 → ( ; 1 6 − ( ( 2 logb 4 ) ↑ 2 ) ) = ; 1 2 ) |
| 405 |
404
|
eqcomd |
⊢ ( 𝜑 → ; 1 2 = ( ; 1 6 − ( ( 2 logb 4 ) ↑ 2 ) ) ) |
| 406 |
386 405
|
breqtrd |
⊢ ( 𝜑 → ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ≤ ( ; 1 6 − ( ( 2 logb 4 ) ↑ 2 ) ) ) |
| 407 |
319 384
|
remulcld |
⊢ ( 𝜑 → ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ∈ ℝ ) |
| 408 |
321
|
resqcld |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 2 ) ∈ ℝ ) |
| 409 |
|
leaddsub |
⊢ ( ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ∈ ℝ ∧ ( ( 2 logb 4 ) ↑ 2 ) ∈ ℝ ∧ ; 1 6 ∈ ℝ ) → ( ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 4 ) ↑ 2 ) ) ≤ ; 1 6 ↔ ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ≤ ( ; 1 6 − ( ( 2 logb 4 ) ↑ 2 ) ) ) ) |
| 410 |
407 408 400 409
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 4 ) ↑ 2 ) ) ≤ ; 1 6 ↔ ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) ≤ ( ; 1 6 − ( ( 2 logb 4 ) ↑ 2 ) ) ) ) |
| 411 |
406 410
|
mpbird |
⊢ ( 𝜑 → ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 4 ) ↑ 2 ) ) ≤ ; 1 6 ) |
| 412 |
315
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 4 ) = ( 2 ↑ 4 ) ) |
| 413 |
|
2exp4 |
⊢ ( 2 ↑ 4 ) = ; 1 6 |
| 414 |
412 413
|
eqtrdi |
⊢ ( 𝜑 → ( ( 2 logb 4 ) ↑ 4 ) = ; 1 6 ) |
| 415 |
414
|
eqcomd |
⊢ ( 𝜑 → ; 1 6 = ( ( 2 logb 4 ) ↑ 4 ) ) |
| 416 |
411 415
|
breqtrd |
⊢ ( 𝜑 → ( ( 2 · ( 2 logb ( ( ( 2 logb 4 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 4 ) ↑ 2 ) ) ≤ ( ( 2 logb 4 ) ↑ 4 ) ) |
| 417 |
11 12 219 261 262 272 280 287 288 302 306 416 4
|
dvle2 |
⊢ ( 𝜑 → ( ( 2 · 𝐶 ) + 𝐷 ) ≤ 𝐸 ) |
| 418 |
1 2 3 16 5 6 7 417
|
aks4d1p1p4 |
⊢ ( 𝜑 → 𝐴 < ( 2 ↑ 𝐵 ) ) |