Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p1p6.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
aks4d1p1p6.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
aks4d1p1p6.3 |
⊢ ( 𝜑 → 3 ≤ 𝐴 ) |
4 |
|
aks4d1p1p6.4 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
5 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
6 |
5
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
7 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℂ ) |
8 |
|
2re |
⊢ 2 ∈ ℝ |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℝ ) |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < 2 ) |
12 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
14 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
16 |
|
3re |
⊢ 3 ∈ ℝ |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 3 ∈ ℝ ) |
18 |
|
3pos |
⊢ 0 < 3 |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < 3 ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 3 ≤ 𝐴 ) |
21 |
14 17 15 19 20
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < 𝐴 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
23 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
25 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
27 |
13
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
28 |
|
elioo5 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
29 |
24 26 27 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
30 |
22 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑥 ) |
32 |
14 15 13 21 31
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < 𝑥 ) |
33 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℝ ) |
34 |
|
1lt2 |
⊢ 1 < 2 |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 < 2 ) |
36 |
33 35
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ≠ 2 ) |
37 |
36
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 1 ) |
38 |
9 11 13 32 37
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb 𝑥 ) ∈ ℝ ) |
39 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 5 ∈ ℕ0 ) |
41 |
38 40
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ↑ 5 ) ∈ ℝ ) |
42 |
41 33
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ∈ ℝ ) |
43 |
14 33
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 0 + 1 ) ∈ ℝ ) |
44 |
14
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( 0 + 1 ) ) |
45 |
40
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 5 ∈ ℤ ) |
46 |
|
2cnd |
⊢ ( ⊤ → 2 ∈ ℂ ) |
47 |
|
0red |
⊢ ( ⊤ → 0 ∈ ℝ ) |
48 |
10
|
a1i |
⊢ ( ⊤ → 0 < 2 ) |
49 |
47 48
|
ltned |
⊢ ( ⊤ → 0 ≠ 2 ) |
50 |
49
|
necomd |
⊢ ( ⊤ → 2 ≠ 0 ) |
51 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
52 |
34
|
a1i |
⊢ ( ⊤ → 1 < 2 ) |
53 |
51 52
|
ltned |
⊢ ( ⊤ → 1 ≠ 2 ) |
54 |
53
|
necomd |
⊢ ( ⊤ → 2 ≠ 1 ) |
55 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
56 |
46 50 54 55
|
syl3anc |
⊢ ( ⊤ → ( 2 logb 1 ) = 0 ) |
57 |
56
|
mptru |
⊢ ( 2 logb 1 ) = 0 |
58 |
|
2lt3 |
⊢ 2 < 3 |
59 |
58
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 < 3 ) |
60 |
33 9 17 35 59
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 < 3 ) |
61 |
33 17 15 60 20
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 < 𝐴 ) |
62 |
33 15 13 61 31
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 < 𝑥 ) |
63 |
|
2z |
⊢ 2 ∈ ℤ |
64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℤ ) |
65 |
64
|
uzidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
66 |
|
1rp |
⊢ 1 ∈ ℝ+ |
67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℝ+ ) |
68 |
13 32
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℝ+ ) |
69 |
|
logblt |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 1 < 𝑥 ↔ ( 2 logb 1 ) < ( 2 logb 𝑥 ) ) ) |
70 |
65 67 68 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 < 𝑥 ↔ ( 2 logb 1 ) < ( 2 logb 𝑥 ) ) ) |
71 |
62 70
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb 1 ) < ( 2 logb 𝑥 ) ) |
72 |
57 71
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( 2 logb 𝑥 ) ) |
73 |
|
expgt0 |
⊢ ( ( ( 2 logb 𝑥 ) ∈ ℝ ∧ 5 ∈ ℤ ∧ 0 < ( 2 logb 𝑥 ) ) → 0 < ( ( 2 logb 𝑥 ) ↑ 5 ) ) |
74 |
38 45 72 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( ( 2 logb 𝑥 ) ↑ 5 ) ) |
75 |
14 41 33 74
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 0 + 1 ) < ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) |
76 |
14 43 42 44 75
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 < ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) |
77 |
9 11 42 76 37
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℝ ) |
78 |
|
recn |
⊢ ( ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℝ → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℂ ) |
79 |
77 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ∈ ℂ ) |
80 |
7 79
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) ∈ ℂ ) |
81 |
|
2rp |
⊢ 2 ∈ ℝ+ |
82 |
81
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℝ+ ) |
83 |
82
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℝ ) |
84 |
42 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
85 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ↑ 5 ) ∈ ℂ ) |
86 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 1 ∈ ℂ ) |
87 |
85 86
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ∈ ℂ ) |
88 |
11
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
89 |
7 88
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℂ ) |
90 |
76
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ≠ 0 ) |
91 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
92 |
|
loggt0b |
⊢ ( 2 ∈ ℝ+ → ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) ) |
93 |
81 92
|
ax-mp |
⊢ ( 0 < ( log ‘ 2 ) ↔ 1 < 2 ) |
94 |
34 93
|
mpbir |
⊢ 0 < ( log ‘ 2 ) |
95 |
94
|
a1i |
⊢ ( 𝜑 → 0 < ( log ‘ 2 ) ) |
96 |
91 95
|
ltned |
⊢ ( 𝜑 → 0 ≠ ( log ‘ 2 ) ) |
97 |
96
|
necomd |
⊢ ( 𝜑 → ( log ‘ 2 ) ≠ 0 ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ≠ 0 ) |
99 |
87 89 90 98
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ≠ 0 ) |
100 |
33 84 99
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) ∈ ℝ ) |
101 |
|
5re |
⊢ 5 ∈ ℝ |
102 |
101
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 5 ∈ ℝ ) |
103 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 4 ∈ ℕ0 ) |
105 |
38 104
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ↑ 4 ) ∈ ℝ ) |
106 |
102 105
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) ∈ ℝ ) |
107 |
13 83
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( log ‘ 2 ) ) ∈ ℝ ) |
108 |
13
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ℂ ) |
109 |
14 32
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 0 ) |
110 |
108 89 109 98
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 · ( log ‘ 2 ) ) ≠ 0 ) |
111 |
33 107 110
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ∈ ℝ ) |
112 |
106 111
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ∈ ℝ ) |
113 |
112 14
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ∈ ℝ ) |
114 |
100 113
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ∈ ℝ ) |
115 |
9 114
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) ∈ ℝ ) |
116 |
42 76
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ∈ ℝ+ ) |
117 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 2 ∈ ℝ ) |
118 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 0 < 2 ) |
119 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
120 |
119
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
121 |
|
rpgt0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) |
122 |
121
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 0 < 𝑦 ) |
123 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 1 ∈ ℝ ) |
124 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 1 < 2 ) |
125 |
123 124
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 1 ≠ 2 ) |
126 |
125
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 2 ≠ 1 ) |
127 |
117 118 120 122 126
|
relogbcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 2 logb 𝑦 ) ∈ ℝ ) |
128 |
127
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 2 logb 𝑦 ) ∈ ℂ ) |
129 |
81
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 2 ∈ ℝ+ ) |
130 |
129
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( log ‘ 2 ) ∈ ℝ ) |
131 |
120 130
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 · ( log ‘ 2 ) ) ∈ ℝ ) |
132 |
120
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℂ ) |
133 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 2 ∈ ℂ ) |
134 |
129
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 2 ≠ 0 ) |
135 |
133 134
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( log ‘ 2 ) ∈ ℂ ) |
136 |
|
rpne0 |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ≠ 0 ) |
137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ≠ 0 ) |
138 |
97
|
necomd |
⊢ ( 𝜑 → 0 ≠ ( log ‘ 2 ) ) |
139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 0 ≠ ( log ‘ 2 ) ) |
140 |
139
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( log ‘ 2 ) ≠ 0 ) |
141 |
132 135 137 140
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 · ( log ‘ 2 ) ) ≠ 0 ) |
142 |
123 131 141
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ∈ ℝ ) |
143 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
144 |
143
|
a1i |
⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
145 |
38
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 logb 𝑥 ) ∈ ℂ ) |
146 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
147 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 5 ∈ ℕ0 ) |
148 |
146 147
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 5 ) ∈ ℂ ) |
149 |
|
5cn |
⊢ 5 ∈ ℂ |
150 |
149
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 5 ∈ ℂ ) |
151 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → 4 ∈ ℕ0 ) |
152 |
146 151
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ 4 ) ∈ ℂ ) |
153 |
150 152
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 5 · ( 𝑧 ↑ 4 ) ) ∈ ℂ ) |
154 |
16
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
155 |
18
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
156 |
91 154 1 155 3
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝐴 ) |
157 |
91 1 156
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
158 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) |
159 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) |
160 |
23 25 157 4 158 159
|
dvrelog2b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) |
161 |
|
5nn |
⊢ 5 ∈ ℕ |
162 |
|
dvexp |
⊢ ( 5 ∈ ℕ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 5 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 5 · ( 𝑧 ↑ ( 5 − 1 ) ) ) ) ) |
163 |
161 162
|
ax-mp |
⊢ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 5 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 5 · ( 𝑧 ↑ ( 5 − 1 ) ) ) ) |
164 |
|
5m1e4 |
⊢ ( 5 − 1 ) = 4 |
165 |
164
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 5 − 1 ) = 4 ) |
166 |
165
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝑧 ↑ ( 5 − 1 ) ) = ( 𝑧 ↑ 4 ) ) |
167 |
166
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 5 · ( 𝑧 ↑ ( 5 − 1 ) ) ) = ( 5 · ( 𝑧 ↑ 4 ) ) ) |
168 |
167
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ ( 5 · ( 𝑧 ↑ ( 5 − 1 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 5 · ( 𝑧 ↑ 4 ) ) ) ) |
169 |
163 168
|
syl5eq |
⊢ ( 𝜑 → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 5 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 5 · ( 𝑧 ↑ 4 ) ) ) ) |
170 |
|
oveq1 |
⊢ ( 𝑧 = ( 2 logb 𝑥 ) → ( 𝑧 ↑ 5 ) = ( ( 2 logb 𝑥 ) ↑ 5 ) ) |
171 |
|
oveq1 |
⊢ ( 𝑧 = ( 2 logb 𝑥 ) → ( 𝑧 ↑ 4 ) = ( ( 2 logb 𝑥 ) ↑ 4 ) ) |
172 |
171
|
oveq2d |
⊢ ( 𝑧 = ( 2 logb 𝑥 ) → ( 5 · ( 𝑧 ↑ 4 ) ) = ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) ) |
173 |
6 144 145 111 148 153 160 169 170 172
|
dvmptco |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 5 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) ) ) |
174 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℂ ) |
176 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
177 |
6 174
|
dvmptc |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ℝ ↦ 1 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
178 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
179 |
178
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
180 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
181 |
180
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
182 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
183 |
182
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
184 |
6 175 176 177 179 181 180 183
|
dvmptres |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 1 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
185 |
6 85 112 173 86 14 184
|
dvmptadd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) |
186 |
|
dfrp2 |
⊢ ℝ+ = ( 0 (,) +∞ ) |
187 |
186
|
a1i |
⊢ ( 𝜑 → ℝ+ = ( 0 (,) +∞ ) ) |
188 |
187
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ+ ↦ ( 2 logb 𝑦 ) ) = ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 2 logb 𝑦 ) ) ) |
189 |
188
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ+ ↦ ( 2 logb 𝑦 ) ) ) = ( ℝ D ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 2 logb 𝑦 ) ) ) ) |
190 |
91
|
rexrd |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
191 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
192 |
191
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
193 |
91
|
leidd |
⊢ ( 𝜑 → 0 ≤ 0 ) |
194 |
|
0lepnf |
⊢ 0 ≤ +∞ |
195 |
194
|
a1i |
⊢ ( 𝜑 → 0 ≤ +∞ ) |
196 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 2 logb 𝑦 ) ) = ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 2 logb 𝑦 ) ) |
197 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) = ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) |
198 |
190 192 193 195 196 197
|
dvrelog2b |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 2 logb 𝑦 ) ) ) = ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) ) |
199 |
187
|
eqcomd |
⊢ ( 𝜑 → ( 0 (,) +∞ ) = ℝ+ ) |
200 |
199
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) ) |
201 |
198 200
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 0 (,) +∞ ) ↦ ( 2 logb 𝑦 ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) ) |
202 |
189 201
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ+ ↦ ( 2 logb 𝑦 ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) ) ) |
203 |
|
oveq2 |
⊢ ( 𝑦 = ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) → ( 2 logb 𝑦 ) = ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) |
204 |
|
oveq1 |
⊢ ( 𝑦 = ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) → ( 𝑦 · ( log ‘ 2 ) ) = ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) |
205 |
204
|
oveq2d |
⊢ ( 𝑦 = ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) → ( 1 / ( 𝑦 · ( log ‘ 2 ) ) ) = ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) ) |
206 |
6 6 116 113 128 142 185 202 203 205
|
dvmptco |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) ) |
207 |
8
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
208 |
207
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
209 |
6 79 114 206 208
|
dvmptcmul |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) ) ) |
210 |
145
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 logb 𝑥 ) ↑ 2 ) ∈ ℂ ) |
211 |
83
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 2 ) ∈ ℝ ) |
212 |
82
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
213 |
7 212
|
logcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 2 ) ∈ ℂ ) |
214 |
213 98 64
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 2 ) ↑ 2 ) ≠ 0 ) |
215 |
9 211 214
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
216 |
68
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
217 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
218 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
219 |
217 218
|
eqeltri |
⊢ ( 2 − 1 ) ∈ ℕ0 |
220 |
219
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 − 1 ) ∈ ℕ0 ) |
221 |
216 220
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) ∈ ℝ ) |
222 |
68
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ≠ 0 ) |
223 |
221 13 222
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ∈ ℝ ) |
224 |
215 223
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ∈ ℝ ) |
225 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 2 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 2 ) ) |
226 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) |
227 |
|
eqid |
⊢ ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) = ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) |
228 |
|
2nn |
⊢ 2 ∈ ℕ |
229 |
228
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
230 |
1 2 156 4 225 226 227 229
|
dvrelogpow2b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) |
231 |
6 80 115 209 210 224 230
|
dvmptadd |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 2 logb ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) ) ) + ( ( 2 logb 𝑥 ) ↑ 2 ) ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( ( 1 / ( ( ( ( 2 logb 𝑥 ) ↑ 5 ) + 1 ) · ( log ‘ 2 ) ) ) · ( ( ( 5 · ( ( 2 logb 𝑥 ) ↑ 4 ) ) · ( 1 / ( 𝑥 · ( log ‘ 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ‘ 2 ) ↑ 2 ) ) · ( ( ( log ‘ 𝑥 ) ↑ ( 2 − 1 ) ) / 𝑥 ) ) ) ) ) |