| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p1p6.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
aks4d1p1p6.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
aks4d1p1p6.3 |
|- ( ph -> 3 <_ A ) |
| 4 |
|
aks4d1p1p6.4 |
|- ( ph -> A <_ B ) |
| 5 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 6 |
5
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 7 |
|
2cnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. CC ) |
| 8 |
|
2re |
|- 2 e. RR |
| 9 |
8
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. RR ) |
| 10 |
|
2pos |
|- 0 < 2 |
| 11 |
10
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < 2 ) |
| 12 |
|
elioore |
|- ( x e. ( A (,) B ) -> x e. RR ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 14 |
|
0red |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 e. RR ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 16 |
|
3re |
|- 3 e. RR |
| 17 |
16
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 3 e. RR ) |
| 18 |
|
3pos |
|- 0 < 3 |
| 19 |
18
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < 3 ) |
| 20 |
3
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 3 <_ A ) |
| 21 |
14 17 15 19 20
|
ltletrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < A ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
| 23 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR* ) |
| 25 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> B e. RR* ) |
| 27 |
13
|
rexrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR* ) |
| 28 |
|
elioo5 |
|- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( x e. ( A (,) B ) <-> ( A < x /\ x < B ) ) ) |
| 29 |
24 26 27 28
|
syl3anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x e. ( A (,) B ) <-> ( A < x /\ x < B ) ) ) |
| 30 |
22 29
|
mpbid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( A < x /\ x < B ) ) |
| 31 |
30
|
simpld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
| 32 |
14 15 13 21 31
|
lttrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < x ) |
| 33 |
|
1red |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. RR ) |
| 34 |
|
1lt2 |
|- 1 < 2 |
| 35 |
34
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 < 2 ) |
| 36 |
33 35
|
ltned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 =/= 2 ) |
| 37 |
36
|
necomd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 1 ) |
| 38 |
9 11 13 32 37
|
relogbcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb x ) e. RR ) |
| 39 |
|
5nn0 |
|- 5 e. NN0 |
| 40 |
39
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 5 e. NN0 ) |
| 41 |
38 40
|
reexpcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) ^ 5 ) e. RR ) |
| 42 |
41 33
|
readdcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( 2 logb x ) ^ 5 ) + 1 ) e. RR ) |
| 43 |
14 33
|
readdcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 0 + 1 ) e. RR ) |
| 44 |
14
|
ltp1d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( 0 + 1 ) ) |
| 45 |
40
|
nn0zd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 5 e. ZZ ) |
| 46 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 47 |
|
0red |
|- ( T. -> 0 e. RR ) |
| 48 |
10
|
a1i |
|- ( T. -> 0 < 2 ) |
| 49 |
47 48
|
ltned |
|- ( T. -> 0 =/= 2 ) |
| 50 |
49
|
necomd |
|- ( T. -> 2 =/= 0 ) |
| 51 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 52 |
34
|
a1i |
|- ( T. -> 1 < 2 ) |
| 53 |
51 52
|
ltned |
|- ( T. -> 1 =/= 2 ) |
| 54 |
53
|
necomd |
|- ( T. -> 2 =/= 1 ) |
| 55 |
|
logb1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 1 ) = 0 ) |
| 56 |
46 50 54 55
|
syl3anc |
|- ( T. -> ( 2 logb 1 ) = 0 ) |
| 57 |
56
|
mptru |
|- ( 2 logb 1 ) = 0 |
| 58 |
|
2lt3 |
|- 2 < 3 |
| 59 |
58
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 < 3 ) |
| 60 |
33 9 17 35 59
|
lttrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 < 3 ) |
| 61 |
33 17 15 60 20
|
ltletrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 < A ) |
| 62 |
33 15 13 61 31
|
lttrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 < x ) |
| 63 |
|
2z |
|- 2 e. ZZ |
| 64 |
63
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. ZZ ) |
| 65 |
64
|
uzidd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. ( ZZ>= ` 2 ) ) |
| 66 |
|
1rp |
|- 1 e. RR+ |
| 67 |
66
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. RR+ ) |
| 68 |
13 32
|
elrpd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR+ ) |
| 69 |
|
logblt |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ 1 e. RR+ /\ x e. RR+ ) -> ( 1 < x <-> ( 2 logb 1 ) < ( 2 logb x ) ) ) |
| 70 |
65 67 68 69
|
syl3anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 1 < x <-> ( 2 logb 1 ) < ( 2 logb x ) ) ) |
| 71 |
62 70
|
mpbid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb 1 ) < ( 2 logb x ) ) |
| 72 |
57 71
|
eqbrtrrid |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( 2 logb x ) ) |
| 73 |
|
expgt0 |
|- ( ( ( 2 logb x ) e. RR /\ 5 e. ZZ /\ 0 < ( 2 logb x ) ) -> 0 < ( ( 2 logb x ) ^ 5 ) ) |
| 74 |
38 45 72 73
|
syl3anc |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( 2 logb x ) ^ 5 ) ) |
| 75 |
14 41 33 74
|
ltadd1dd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 0 + 1 ) < ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) |
| 76 |
14 43 42 44 75
|
lttrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 < ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) |
| 77 |
9 11 42 76 37
|
relogbcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) e. RR ) |
| 78 |
|
recn |
|- ( ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) e. RR -> ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) e. CC ) |
| 79 |
77 78
|
syl |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) e. CC ) |
| 80 |
7 79
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 x. ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) ) e. CC ) |
| 81 |
|
2rp |
|- 2 e. RR+ |
| 82 |
81
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 e. RR+ ) |
| 83 |
82
|
relogcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. RR ) |
| 84 |
42 83
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) e. RR ) |
| 85 |
41
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) ^ 5 ) e. CC ) |
| 86 |
|
1cnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 1 e. CC ) |
| 87 |
85 86
|
addcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( 2 logb x ) ^ 5 ) + 1 ) e. CC ) |
| 88 |
11
|
gt0ne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 0 ) |
| 89 |
7 88
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. CC ) |
| 90 |
76
|
gt0ne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( 2 logb x ) ^ 5 ) + 1 ) =/= 0 ) |
| 91 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 92 |
|
loggt0b |
|- ( 2 e. RR+ -> ( 0 < ( log ` 2 ) <-> 1 < 2 ) ) |
| 93 |
81 92
|
ax-mp |
|- ( 0 < ( log ` 2 ) <-> 1 < 2 ) |
| 94 |
34 93
|
mpbir |
|- 0 < ( log ` 2 ) |
| 95 |
94
|
a1i |
|- ( ph -> 0 < ( log ` 2 ) ) |
| 96 |
91 95
|
ltned |
|- ( ph -> 0 =/= ( log ` 2 ) ) |
| 97 |
96
|
necomd |
|- ( ph -> ( log ` 2 ) =/= 0 ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) =/= 0 ) |
| 99 |
87 89 90 98
|
mulne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) =/= 0 ) |
| 100 |
33 84 99
|
redivcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) e. RR ) |
| 101 |
|
5re |
|- 5 e. RR |
| 102 |
101
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 5 e. RR ) |
| 103 |
|
4nn0 |
|- 4 e. NN0 |
| 104 |
103
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 4 e. NN0 ) |
| 105 |
38 104
|
reexpcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) ^ 4 ) e. RR ) |
| 106 |
102 105
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 5 x. ( ( 2 logb x ) ^ 4 ) ) e. RR ) |
| 107 |
13 83
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( log ` 2 ) ) e. RR ) |
| 108 |
13
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. CC ) |
| 109 |
14 32
|
gtned |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= 0 ) |
| 110 |
108 89 109 98
|
mulne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x x. ( log ` 2 ) ) =/= 0 ) |
| 111 |
33 107 110
|
redivcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 1 / ( x x. ( log ` 2 ) ) ) e. RR ) |
| 112 |
106 111
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) e. RR ) |
| 113 |
112 14
|
readdcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) e. RR ) |
| 114 |
100 113
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) ) e. RR ) |
| 115 |
9 114
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 x. ( ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) ) ) e. RR ) |
| 116 |
42 76
|
elrpd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( 2 logb x ) ^ 5 ) + 1 ) e. RR+ ) |
| 117 |
8
|
a1i |
|- ( ( ph /\ y e. RR+ ) -> 2 e. RR ) |
| 118 |
10
|
a1i |
|- ( ( ph /\ y e. RR+ ) -> 0 < 2 ) |
| 119 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
| 120 |
119
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> y e. RR ) |
| 121 |
|
rpgt0 |
|- ( y e. RR+ -> 0 < y ) |
| 122 |
121
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> 0 < y ) |
| 123 |
|
1red |
|- ( ( ph /\ y e. RR+ ) -> 1 e. RR ) |
| 124 |
34
|
a1i |
|- ( ( ph /\ y e. RR+ ) -> 1 < 2 ) |
| 125 |
123 124
|
ltned |
|- ( ( ph /\ y e. RR+ ) -> 1 =/= 2 ) |
| 126 |
125
|
necomd |
|- ( ( ph /\ y e. RR+ ) -> 2 =/= 1 ) |
| 127 |
117 118 120 122 126
|
relogbcld |
|- ( ( ph /\ y e. RR+ ) -> ( 2 logb y ) e. RR ) |
| 128 |
127
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> ( 2 logb y ) e. CC ) |
| 129 |
81
|
a1i |
|- ( ( ph /\ y e. RR+ ) -> 2 e. RR+ ) |
| 130 |
129
|
relogcld |
|- ( ( ph /\ y e. RR+ ) -> ( log ` 2 ) e. RR ) |
| 131 |
120 130
|
remulcld |
|- ( ( ph /\ y e. RR+ ) -> ( y x. ( log ` 2 ) ) e. RR ) |
| 132 |
120
|
recnd |
|- ( ( ph /\ y e. RR+ ) -> y e. CC ) |
| 133 |
|
2cnd |
|- ( ( ph /\ y e. RR+ ) -> 2 e. CC ) |
| 134 |
129
|
rpne0d |
|- ( ( ph /\ y e. RR+ ) -> 2 =/= 0 ) |
| 135 |
133 134
|
logcld |
|- ( ( ph /\ y e. RR+ ) -> ( log ` 2 ) e. CC ) |
| 136 |
|
rpne0 |
|- ( y e. RR+ -> y =/= 0 ) |
| 137 |
136
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> y =/= 0 ) |
| 138 |
97
|
necomd |
|- ( ph -> 0 =/= ( log ` 2 ) ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> 0 =/= ( log ` 2 ) ) |
| 140 |
139
|
necomd |
|- ( ( ph /\ y e. RR+ ) -> ( log ` 2 ) =/= 0 ) |
| 141 |
132 135 137 140
|
mulne0d |
|- ( ( ph /\ y e. RR+ ) -> ( y x. ( log ` 2 ) ) =/= 0 ) |
| 142 |
123 131 141
|
redivcld |
|- ( ( ph /\ y e. RR+ ) -> ( 1 / ( y x. ( log ` 2 ) ) ) e. RR ) |
| 143 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 144 |
143
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
| 145 |
38
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 logb x ) e. CC ) |
| 146 |
|
simpr |
|- ( ( ph /\ z e. CC ) -> z e. CC ) |
| 147 |
39
|
a1i |
|- ( ( ph /\ z e. CC ) -> 5 e. NN0 ) |
| 148 |
146 147
|
expcld |
|- ( ( ph /\ z e. CC ) -> ( z ^ 5 ) e. CC ) |
| 149 |
|
5cn |
|- 5 e. CC |
| 150 |
149
|
a1i |
|- ( ( ph /\ z e. CC ) -> 5 e. CC ) |
| 151 |
103
|
a1i |
|- ( ( ph /\ z e. CC ) -> 4 e. NN0 ) |
| 152 |
146 151
|
expcld |
|- ( ( ph /\ z e. CC ) -> ( z ^ 4 ) e. CC ) |
| 153 |
150 152
|
mulcld |
|- ( ( ph /\ z e. CC ) -> ( 5 x. ( z ^ 4 ) ) e. CC ) |
| 154 |
16
|
a1i |
|- ( ph -> 3 e. RR ) |
| 155 |
18
|
a1i |
|- ( ph -> 0 < 3 ) |
| 156 |
91 154 1 155 3
|
ltletrd |
|- ( ph -> 0 < A ) |
| 157 |
91 1 156
|
ltled |
|- ( ph -> 0 <_ A ) |
| 158 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( 2 logb x ) ) = ( x e. ( A (,) B ) |-> ( 2 logb x ) ) |
| 159 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) |
| 160 |
23 25 157 4 158 159
|
dvrelog2b |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( 2 logb x ) ) ) = ( x e. ( A (,) B ) |-> ( 1 / ( x x. ( log ` 2 ) ) ) ) ) |
| 161 |
|
5nn |
|- 5 e. NN |
| 162 |
|
dvexp |
|- ( 5 e. NN -> ( CC _D ( z e. CC |-> ( z ^ 5 ) ) ) = ( z e. CC |-> ( 5 x. ( z ^ ( 5 - 1 ) ) ) ) ) |
| 163 |
161 162
|
ax-mp |
|- ( CC _D ( z e. CC |-> ( z ^ 5 ) ) ) = ( z e. CC |-> ( 5 x. ( z ^ ( 5 - 1 ) ) ) ) |
| 164 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
| 165 |
164
|
a1i |
|- ( ( ph /\ z e. CC ) -> ( 5 - 1 ) = 4 ) |
| 166 |
165
|
oveq2d |
|- ( ( ph /\ z e. CC ) -> ( z ^ ( 5 - 1 ) ) = ( z ^ 4 ) ) |
| 167 |
166
|
oveq2d |
|- ( ( ph /\ z e. CC ) -> ( 5 x. ( z ^ ( 5 - 1 ) ) ) = ( 5 x. ( z ^ 4 ) ) ) |
| 168 |
167
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> ( 5 x. ( z ^ ( 5 - 1 ) ) ) ) = ( z e. CC |-> ( 5 x. ( z ^ 4 ) ) ) ) |
| 169 |
163 168
|
eqtrid |
|- ( ph -> ( CC _D ( z e. CC |-> ( z ^ 5 ) ) ) = ( z e. CC |-> ( 5 x. ( z ^ 4 ) ) ) ) |
| 170 |
|
oveq1 |
|- ( z = ( 2 logb x ) -> ( z ^ 5 ) = ( ( 2 logb x ) ^ 5 ) ) |
| 171 |
|
oveq1 |
|- ( z = ( 2 logb x ) -> ( z ^ 4 ) = ( ( 2 logb x ) ^ 4 ) ) |
| 172 |
171
|
oveq2d |
|- ( z = ( 2 logb x ) -> ( 5 x. ( z ^ 4 ) ) = ( 5 x. ( ( 2 logb x ) ^ 4 ) ) ) |
| 173 |
6 144 145 111 148 153 160 169 170 172
|
dvmptco |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ 5 ) ) ) = ( x e. ( A (,) B ) |-> ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) ) ) |
| 174 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ x e. RR ) -> 1 e. CC ) |
| 176 |
|
0red |
|- ( ( ph /\ x e. RR ) -> 0 e. RR ) |
| 177 |
6 174
|
dvmptc |
|- ( ph -> ( RR _D ( x e. RR |-> 1 ) ) = ( x e. RR |-> 0 ) ) |
| 178 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 179 |
178
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 180 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 181 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 182 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 183 |
182
|
a1i |
|- ( ph -> ( A (,) B ) e. ( topGen ` ran (,) ) ) |
| 184 |
6 175 176 177 179 180 181 183
|
dvmptres |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> 1 ) ) = ( x e. ( A (,) B ) |-> 0 ) ) |
| 185 |
6 85 112 173 86 14 184
|
dvmptadd |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) ) = ( x e. ( A (,) B ) |-> ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) ) ) |
| 186 |
|
dfrp2 |
|- RR+ = ( 0 (,) +oo ) |
| 187 |
186
|
a1i |
|- ( ph -> RR+ = ( 0 (,) +oo ) ) |
| 188 |
187
|
mpteq1d |
|- ( ph -> ( y e. RR+ |-> ( 2 logb y ) ) = ( y e. ( 0 (,) +oo ) |-> ( 2 logb y ) ) ) |
| 189 |
188
|
oveq2d |
|- ( ph -> ( RR _D ( y e. RR+ |-> ( 2 logb y ) ) ) = ( RR _D ( y e. ( 0 (,) +oo ) |-> ( 2 logb y ) ) ) ) |
| 190 |
91
|
rexrd |
|- ( ph -> 0 e. RR* ) |
| 191 |
|
pnfxr |
|- +oo e. RR* |
| 192 |
191
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 193 |
91
|
leidd |
|- ( ph -> 0 <_ 0 ) |
| 194 |
|
0lepnf |
|- 0 <_ +oo |
| 195 |
194
|
a1i |
|- ( ph -> 0 <_ +oo ) |
| 196 |
|
eqid |
|- ( y e. ( 0 (,) +oo ) |-> ( 2 logb y ) ) = ( y e. ( 0 (,) +oo ) |-> ( 2 logb y ) ) |
| 197 |
|
eqid |
|- ( y e. ( 0 (,) +oo ) |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) = ( y e. ( 0 (,) +oo ) |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) |
| 198 |
190 192 193 195 196 197
|
dvrelog2b |
|- ( ph -> ( RR _D ( y e. ( 0 (,) +oo ) |-> ( 2 logb y ) ) ) = ( y e. ( 0 (,) +oo ) |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) ) |
| 199 |
187
|
eqcomd |
|- ( ph -> ( 0 (,) +oo ) = RR+ ) |
| 200 |
199
|
mpteq1d |
|- ( ph -> ( y e. ( 0 (,) +oo ) |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) = ( y e. RR+ |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) ) |
| 201 |
198 200
|
eqtrd |
|- ( ph -> ( RR _D ( y e. ( 0 (,) +oo ) |-> ( 2 logb y ) ) ) = ( y e. RR+ |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) ) |
| 202 |
189 201
|
eqtrd |
|- ( ph -> ( RR _D ( y e. RR+ |-> ( 2 logb y ) ) ) = ( y e. RR+ |-> ( 1 / ( y x. ( log ` 2 ) ) ) ) ) |
| 203 |
|
oveq2 |
|- ( y = ( ( ( 2 logb x ) ^ 5 ) + 1 ) -> ( 2 logb y ) = ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) ) |
| 204 |
|
oveq1 |
|- ( y = ( ( ( 2 logb x ) ^ 5 ) + 1 ) -> ( y x. ( log ` 2 ) ) = ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) |
| 205 |
204
|
oveq2d |
|- ( y = ( ( ( 2 logb x ) ^ 5 ) + 1 ) -> ( 1 / ( y x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) ) |
| 206 |
6 6 116 113 128 142 185 202 203 205
|
dvmptco |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) ) ) ) |
| 207 |
8
|
a1i |
|- ( ph -> 2 e. RR ) |
| 208 |
207
|
recnd |
|- ( ph -> 2 e. CC ) |
| 209 |
6 79 114 206 208
|
dvmptcmul |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( 2 x. ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) ) ) ) = ( x e. ( A (,) B ) |-> ( 2 x. ( ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) ) ) ) ) |
| 210 |
145
|
sqcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 logb x ) ^ 2 ) e. CC ) |
| 211 |
83
|
resqcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ 2 ) e. RR ) |
| 212 |
82
|
rpne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 2 =/= 0 ) |
| 213 |
7 212
|
logcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` 2 ) e. CC ) |
| 214 |
213 98 64
|
expne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` 2 ) ^ 2 ) =/= 0 ) |
| 215 |
9 211 214
|
redivcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 / ( ( log ` 2 ) ^ 2 ) ) e. RR ) |
| 216 |
68
|
relogcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( log ` x ) e. RR ) |
| 217 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 218 |
|
1nn0 |
|- 1 e. NN0 |
| 219 |
217 218
|
eqeltri |
|- ( 2 - 1 ) e. NN0 |
| 220 |
219
|
a1i |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( 2 - 1 ) e. NN0 ) |
| 221 |
216 220
|
reexpcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( log ` x ) ^ ( 2 - 1 ) ) e. RR ) |
| 222 |
68
|
rpne0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= 0 ) |
| 223 |
221 13 222
|
redivcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( log ` x ) ^ ( 2 - 1 ) ) / x ) e. RR ) |
| 224 |
215 223
|
remulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` x ) ^ ( 2 - 1 ) ) / x ) ) e. RR ) |
| 225 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ 2 ) ) = ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ 2 ) ) |
| 226 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` x ) ^ ( 2 - 1 ) ) / x ) ) ) = ( x e. ( A (,) B ) |-> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` x ) ^ ( 2 - 1 ) ) / x ) ) ) |
| 227 |
|
eqid |
|- ( 2 / ( ( log ` 2 ) ^ 2 ) ) = ( 2 / ( ( log ` 2 ) ^ 2 ) ) |
| 228 |
|
2nn |
|- 2 e. NN |
| 229 |
228
|
a1i |
|- ( ph -> 2 e. NN ) |
| 230 |
1 2 156 4 225 226 227 229
|
dvrelogpow2b |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( 2 logb x ) ^ 2 ) ) ) = ( x e. ( A (,) B ) |-> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` x ) ^ ( 2 - 1 ) ) / x ) ) ) ) |
| 231 |
6 80 115 209 210 224 230
|
dvmptadd |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> ( ( 2 x. ( 2 logb ( ( ( 2 logb x ) ^ 5 ) + 1 ) ) ) + ( ( 2 logb x ) ^ 2 ) ) ) ) = ( x e. ( A (,) B ) |-> ( ( 2 x. ( ( 1 / ( ( ( ( 2 logb x ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb x ) ^ 4 ) ) x. ( 1 / ( x x. ( log ` 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` x ) ^ ( 2 - 1 ) ) / x ) ) ) ) ) |