| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p1p7.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
aks4d1p1p7.2 |
|- ( ph -> 4 <_ A ) |
| 3 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 4 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 5 |
|
4re |
|- 4 e. RR |
| 6 |
5
|
a1i |
|- ( ph -> 4 e. RR ) |
| 7 |
|
4pos |
|- 0 < 4 |
| 8 |
7
|
a1i |
|- ( ph -> 0 < 4 ) |
| 9 |
4 6 1 8 2
|
ltletrd |
|- ( ph -> 0 < A ) |
| 10 |
4 9
|
ltned |
|- ( ph -> 0 =/= A ) |
| 11 |
10
|
necomd |
|- ( ph -> A =/= 0 ) |
| 12 |
3 11
|
logcld |
|- ( ph -> ( log ` A ) e. CC ) |
| 13 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 14 |
|
2pos |
|- 0 < 2 |
| 15 |
14
|
a1i |
|- ( ph -> 0 < 2 ) |
| 16 |
4 15
|
ltned |
|- ( ph -> 0 =/= 2 ) |
| 17 |
16
|
necomd |
|- ( ph -> 2 =/= 0 ) |
| 18 |
13 17
|
logcld |
|- ( ph -> ( log ` 2 ) e. CC ) |
| 19 |
|
1lt2 |
|- 1 < 2 |
| 20 |
|
2rp |
|- 2 e. RR+ |
| 21 |
|
loggt0b |
|- ( 2 e. RR+ -> ( 0 < ( log ` 2 ) <-> 1 < 2 ) ) |
| 22 |
20 21
|
ax-mp |
|- ( 0 < ( log ` 2 ) <-> 1 < 2 ) |
| 23 |
19 22
|
mpbir |
|- 0 < ( log ` 2 ) |
| 24 |
23
|
a1i |
|- ( ph -> 0 < ( log ` 2 ) ) |
| 25 |
4 24
|
ltned |
|- ( ph -> 0 =/= ( log ` 2 ) ) |
| 26 |
25
|
necomd |
|- ( ph -> ( log ` 2 ) =/= 0 ) |
| 27 |
|
5nn0 |
|- 5 e. NN0 |
| 28 |
27
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 29 |
12 18 26 28
|
expdivd |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) = ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) = ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) ) |
| 31 |
30
|
oveq1d |
|- ( ph -> ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) = ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) |
| 32 |
31
|
oveq2d |
|- ( ph -> ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 34 |
33
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 35 |
34
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) = ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) ) |
| 36 |
|
2re |
|- 2 e. RR |
| 37 |
36
|
a1i |
|- ( ph -> 2 e. RR ) |
| 38 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 39 |
1 9
|
elrpd |
|- ( ph -> A e. RR+ ) |
| 40 |
39
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
| 41 |
40 28
|
reexpcld |
|- ( ph -> ( ( log ` A ) ^ 5 ) e. RR ) |
| 42 |
20
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 43 |
42
|
relogcld |
|- ( ph -> ( log ` 2 ) e. RR ) |
| 44 |
43 28
|
reexpcld |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) e. RR ) |
| 45 |
28
|
nn0zd |
|- ( ph -> 5 e. ZZ ) |
| 46 |
18 26 45
|
expne0d |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) =/= 0 ) |
| 47 |
41 44 46
|
redivcld |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) e. RR ) |
| 48 |
47 38
|
readdcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) e. RR ) |
| 49 |
48 43
|
remulcld |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) e. RR ) |
| 50 |
12 28
|
expcld |
|- ( ph -> ( ( log ` A ) ^ 5 ) e. CC ) |
| 51 |
18 28
|
expcld |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) e. CC ) |
| 52 |
50 51 46
|
divcld |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) e. CC ) |
| 53 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 54 |
52 53
|
addcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) e. CC ) |
| 55 |
19
|
a1i |
|- ( ph -> 1 < 2 ) |
| 56 |
37 55
|
rplogcld |
|- ( ph -> ( log ` 2 ) e. RR+ ) |
| 57 |
56 45
|
rpexpcld |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) e. RR+ ) |
| 58 |
|
1re |
|- 1 e. RR |
| 59 |
|
3nn0 |
|- 3 e. NN0 |
| 60 |
58 59
|
nn0addge2i |
|- 1 <_ ( 3 + 1 ) |
| 61 |
60
|
a1i |
|- ( ph -> 1 <_ ( 3 + 1 ) ) |
| 62 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
| 63 |
61 62
|
breqtrrdi |
|- ( ph -> 1 <_ 4 ) |
| 64 |
38 6 1 63 2
|
letrd |
|- ( ph -> 1 <_ A ) |
| 65 |
1 64
|
logge0d |
|- ( ph -> 0 <_ ( log ` A ) ) |
| 66 |
40 28 65
|
expge0d |
|- ( ph -> 0 <_ ( ( log ` A ) ^ 5 ) ) |
| 67 |
41 57 66
|
divge0d |
|- ( ph -> 0 <_ ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) ) |
| 68 |
47
|
ltp1d |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) < ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) ) |
| 69 |
4 47 48 67 68
|
lelttrd |
|- ( ph -> 0 < ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) ) |
| 70 |
4 69
|
ltned |
|- ( ph -> 0 =/= ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) ) |
| 71 |
70
|
necomd |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) =/= 0 ) |
| 72 |
54 18 71 26
|
mulne0d |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) =/= 0 ) |
| 73 |
38 49 72
|
redivcld |
|- ( ph -> ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) e. RR ) |
| 74 |
|
5re |
|- 5 e. RR |
| 75 |
74
|
a1i |
|- ( ph -> 5 e. RR ) |
| 76 |
|
4nn0 |
|- 4 e. NN0 |
| 77 |
76
|
a1i |
|- ( ph -> 4 e. NN0 ) |
| 78 |
40 77
|
reexpcld |
|- ( ph -> ( ( log ` A ) ^ 4 ) e. RR ) |
| 79 |
75 78
|
remulcld |
|- ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) e. RR ) |
| 80 |
44 1
|
remulcld |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) e. RR ) |
| 81 |
51 3 46 11
|
mulne0d |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) =/= 0 ) |
| 82 |
79 80 81
|
redivcld |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) e. RR ) |
| 83 |
73 82
|
remulcld |
|- ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) e. RR ) |
| 84 |
37 83
|
remulcld |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) e. RR ) |
| 85 |
43
|
resqcld |
|- ( ph -> ( ( log ` 2 ) ^ 2 ) e. RR ) |
| 86 |
|
2z |
|- 2 e. ZZ |
| 87 |
86
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 88 |
18 26 87
|
expne0d |
|- ( ph -> ( ( log ` 2 ) ^ 2 ) =/= 0 ) |
| 89 |
37 85 88
|
redivcld |
|- ( ph -> ( 2 / ( ( log ` 2 ) ^ 2 ) ) e. RR ) |
| 90 |
|
1nn0 |
|- 1 e. NN0 |
| 91 |
90
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 92 |
40 91
|
reexpcld |
|- ( ph -> ( ( log ` A ) ^ 1 ) e. RR ) |
| 93 |
92 1 11
|
redivcld |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) / A ) e. RR ) |
| 94 |
89 93
|
remulcld |
|- ( ph -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) e. RR ) |
| 95 |
84 94
|
readdcld |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) e. RR ) |
| 96 |
47 43
|
remulcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) e. RR ) |
| 97 |
|
1lt4 |
|- 1 < 4 |
| 98 |
97
|
a1i |
|- ( ph -> 1 < 4 ) |
| 99 |
38 6 1 98 2
|
ltletrd |
|- ( ph -> 1 < A ) |
| 100 |
|
loggt0b |
|- ( A e. RR+ -> ( 0 < ( log ` A ) <-> 1 < A ) ) |
| 101 |
39 100
|
syl |
|- ( ph -> ( 0 < ( log ` A ) <-> 1 < A ) ) |
| 102 |
99 101
|
mpbird |
|- ( ph -> 0 < ( log ` A ) ) |
| 103 |
4 102
|
ltned |
|- ( ph -> 0 =/= ( log ` A ) ) |
| 104 |
103
|
necomd |
|- ( ph -> ( log ` A ) =/= 0 ) |
| 105 |
12 104 45
|
expne0d |
|- ( ph -> ( ( log ` A ) ^ 5 ) =/= 0 ) |
| 106 |
50 51 105 46
|
divne0d |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) =/= 0 ) |
| 107 |
52 18 106 26
|
mulne0d |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) =/= 0 ) |
| 108 |
38 96 107
|
redivcld |
|- ( ph -> ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) e. RR ) |
| 109 |
108 82
|
remulcld |
|- ( ph -> ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) e. RR ) |
| 110 |
37 109
|
remulcld |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) e. RR ) |
| 111 |
110 94
|
readdcld |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) e. RR ) |
| 112 |
59
|
a1i |
|- ( ph -> 3 e. NN0 ) |
| 113 |
40 112
|
reexpcld |
|- ( ph -> ( ( log ` A ) ^ 3 ) e. RR ) |
| 114 |
6 113
|
remulcld |
|- ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) e. RR ) |
| 115 |
43 77
|
reexpcld |
|- ( ph -> ( ( log ` 2 ) ^ 4 ) e. RR ) |
| 116 |
115 1
|
remulcld |
|- ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) e. RR ) |
| 117 |
18 77
|
expcld |
|- ( ph -> ( ( log ` 2 ) ^ 4 ) e. CC ) |
| 118 |
|
4z |
|- 4 e. ZZ |
| 119 |
118
|
a1i |
|- ( ph -> 4 e. ZZ ) |
| 120 |
18 26 119
|
expne0d |
|- ( ph -> ( ( log ` 2 ) ^ 4 ) =/= 0 ) |
| 121 |
117 3 120 11
|
mulne0d |
|- ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) =/= 0 ) |
| 122 |
114 116 121
|
redivcld |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) e. RR ) |
| 123 |
|
0le2 |
|- 0 <_ 2 |
| 124 |
123
|
a1i |
|- ( ph -> 0 <_ 2 ) |
| 125 |
57 39
|
rpmulcld |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) e. RR+ ) |
| 126 |
28
|
nn0ge0d |
|- ( ph -> 0 <_ 5 ) |
| 127 |
40 77 65
|
expge0d |
|- ( ph -> 0 <_ ( ( log ` A ) ^ 4 ) ) |
| 128 |
75 78 126 127
|
mulge0d |
|- ( ph -> 0 <_ ( 5 x. ( ( log ` A ) ^ 4 ) ) ) |
| 129 |
79 125 128
|
divge0d |
|- ( ph -> 0 <_ ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) |
| 130 |
1 99
|
rplogcld |
|- ( ph -> ( log ` A ) e. RR+ ) |
| 131 |
130 45
|
rpexpcld |
|- ( ph -> ( ( log ` A ) ^ 5 ) e. RR+ ) |
| 132 |
131 57
|
rpdivcld |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) e. RR+ ) |
| 133 |
132 56
|
rpmulcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) e. RR+ ) |
| 134 |
24 22
|
sylib |
|- ( ph -> 1 < 2 ) |
| 135 |
37 134
|
rplogcld |
|- ( ph -> ( log ` 2 ) e. RR+ ) |
| 136 |
135 45
|
rpexpcld |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) e. RR+ ) |
| 137 |
41 136 66
|
divge0d |
|- ( ph -> 0 <_ ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) ) |
| 138 |
47 137
|
ge0p1rpd |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) e. RR+ ) |
| 139 |
138 135
|
rpmulcld |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) e. RR+ ) |
| 140 |
|
0le1 |
|- 0 <_ 1 |
| 141 |
140
|
a1i |
|- ( ph -> 0 <_ 1 ) |
| 142 |
135
|
rpred |
|- ( ph -> ( log ` 2 ) e. RR ) |
| 143 |
135
|
rpge0d |
|- ( ph -> 0 <_ ( log ` 2 ) ) |
| 144 |
47
|
lep1d |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) <_ ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) ) |
| 145 |
47 48 142 143 144
|
lemul1ad |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) <_ ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) |
| 146 |
133 139 38 141 145
|
lediv2ad |
|- ( ph -> ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) <_ ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) ) |
| 147 |
73 108 82 129 146
|
lemul1ad |
|- ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) <_ ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 148 |
83 109 37 124 147
|
lemul2ad |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) <_ ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 149 |
84 110 94 148
|
leadd1dd |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) ) |
| 150 |
50 18 51 46
|
div23d |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) = ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) |
| 151 |
150
|
eqcomd |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) = ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) |
| 152 |
151
|
oveq2d |
|- ( ph -> ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) ) |
| 153 |
152
|
oveq1d |
|- ( ph -> ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 154 |
153
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 155 |
18
|
sqcld |
|- ( ph -> ( ( log ` 2 ) ^ 2 ) e. CC ) |
| 156 |
12 91
|
expcld |
|- ( ph -> ( ( log ` A ) ^ 1 ) e. CC ) |
| 157 |
13 155 156 3 88 11
|
divmuldivd |
|- ( ph -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) |
| 158 |
154 157
|
oveq12d |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) = ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 159 |
50 18
|
mulcld |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) e. CC ) |
| 160 |
50 18 105 26
|
mulne0d |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) =/= 0 ) |
| 161 |
53 159 51 160 46
|
divdiv2d |
|- ( ph -> ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) = ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) |
| 162 |
161
|
oveq1d |
|- ( ph -> ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 163 |
162
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 164 |
53 51
|
mulcld |
|- ( ph -> ( 1 x. ( ( log ` 2 ) ^ 5 ) ) e. CC ) |
| 165 |
164 159 160
|
divcld |
|- ( ph -> ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) e. CC ) |
| 166 |
82
|
recnd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) e. CC ) |
| 167 |
13 165 166
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( 2 x. ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 168 |
167
|
eqcomd |
|- ( ph -> ( 2 x. ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 169 |
163 168
|
eqtrd |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 170 |
169
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 171 |
13 164 159 160
|
divassd |
|- ( ph -> ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) = ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) ) |
| 172 |
171
|
eqcomd |
|- ( ph -> ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) = ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) |
| 173 |
172
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 174 |
173
|
oveq1d |
|- ( ph -> ( ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 175 |
13 53 51
|
mulassd |
|- ( ph -> ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) = ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) ) |
| 176 |
175
|
eqcomd |
|- ( ph -> ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) = ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) ) |
| 177 |
176
|
oveq1d |
|- ( ph -> ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) = ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) |
| 178 |
177
|
oveq1d |
|- ( ph -> ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 179 |
178
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 180 |
13
|
mulridd |
|- ( ph -> ( 2 x. 1 ) = 2 ) |
| 181 |
180
|
oveq1d |
|- ( ph -> ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) = ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) |
| 182 |
181
|
oveq1d |
|- ( ph -> ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) = ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) |
| 183 |
182
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 184 |
183
|
oveq1d |
|- ( ph -> ( ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 185 |
13 51
|
mulcld |
|- ( ph -> ( 2 x. ( ( log ` 2 ) ^ 5 ) ) e. CC ) |
| 186 |
79
|
recnd |
|- ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) e. CC ) |
| 187 |
51 3
|
mulcld |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) e. CC ) |
| 188 |
185 159 186 187 160 81
|
divmuldivd |
|- ( ph -> ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 189 |
188
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 190 |
50 18 187
|
mulassd |
|- ( ph -> ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 191 |
190
|
oveq2d |
|- ( ph -> ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 192 |
191
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 193 |
185 186
|
mulcomd |
|- ( ph -> ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) = ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) ) |
| 194 |
18 51 3
|
mulassd |
|- ( ph -> ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) = ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) |
| 195 |
194
|
eqcomd |
|- ( ph -> ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) |
| 196 |
195
|
oveq2d |
|- ( ph -> ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) |
| 197 |
193 196
|
oveq12d |
|- ( ph -> ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) ) |
| 198 |
197
|
oveq1d |
|- ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 199 |
18 51
|
mulcld |
|- ( ph -> ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) e. CC ) |
| 200 |
199 3
|
mulcld |
|- ( ph -> ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) e. CC ) |
| 201 |
18 51 26 46
|
mulne0d |
|- ( ph -> ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) =/= 0 ) |
| 202 |
199 3 201 11
|
mulne0d |
|- ( ph -> ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) =/= 0 ) |
| 203 |
186 50 185 200 105 202
|
divmuldivd |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) ) |
| 204 |
203
|
eqcomd |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) ) |
| 205 |
204
|
oveq1d |
|- ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 206 |
75
|
recnd |
|- ( ph -> 5 e. CC ) |
| 207 |
78
|
recnd |
|- ( ph -> ( ( log ` A ) ^ 4 ) e. CC ) |
| 208 |
206 207 50 105
|
divassd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) = ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) ) |
| 209 |
194
|
oveq2d |
|- ( ph -> ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) = ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 210 |
208 209
|
oveq12d |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) = ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 211 |
210
|
oveq1d |
|- ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 212 |
77
|
nn0zd |
|- ( ph -> 4 e. ZZ ) |
| 213 |
12 104 45 212
|
expsubd |
|- ( ph -> ( ( log ` A ) ^ ( 4 - 5 ) ) = ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) |
| 214 |
213
|
eqcomd |
|- ( ph -> ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) = ( ( log ` A ) ^ ( 4 - 5 ) ) ) |
| 215 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
| 216 |
74
|
recni |
|- 5 e. CC |
| 217 |
5
|
recni |
|- 4 e. CC |
| 218 |
|
ax-1cn |
|- 1 e. CC |
| 219 |
216 217 218
|
subaddi |
|- ( ( 5 - 4 ) = 1 <-> ( 4 + 1 ) = 5 ) |
| 220 |
215 219
|
mpbir |
|- ( 5 - 4 ) = 1 |
| 221 |
220
|
a1i |
|- ( ph -> ( 5 - 4 ) = 1 ) |
| 222 |
53
|
subid1d |
|- ( ph -> ( 1 - 0 ) = 1 ) |
| 223 |
221 222
|
eqtr4d |
|- ( ph -> ( 5 - 4 ) = ( 1 - 0 ) ) |
| 224 |
206 217
|
jctir |
|- ( ph -> ( 5 e. CC /\ 4 e. CC ) ) |
| 225 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 226 |
53 225
|
jca |
|- ( ph -> ( 1 e. CC /\ 0 e. CC ) ) |
| 227 |
|
subeqrev |
|- ( ( ( 5 e. CC /\ 4 e. CC ) /\ ( 1 e. CC /\ 0 e. CC ) ) -> ( ( 5 - 4 ) = ( 1 - 0 ) <-> ( 4 - 5 ) = ( 0 - 1 ) ) ) |
| 228 |
224 226 227
|
syl2anc |
|- ( ph -> ( ( 5 - 4 ) = ( 1 - 0 ) <-> ( 4 - 5 ) = ( 0 - 1 ) ) ) |
| 229 |
223 228
|
mpbid |
|- ( ph -> ( 4 - 5 ) = ( 0 - 1 ) ) |
| 230 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 231 |
229 230
|
eqtr4di |
|- ( ph -> ( 4 - 5 ) = -u 1 ) |
| 232 |
231
|
oveq2d |
|- ( ph -> ( ( log ` A ) ^ ( 4 - 5 ) ) = ( ( log ` A ) ^ -u 1 ) ) |
| 233 |
214 232
|
eqtrd |
|- ( ph -> ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) = ( ( log ` A ) ^ -u 1 ) ) |
| 234 |
233
|
oveq2d |
|- ( ph -> ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) = ( 5 x. ( ( log ` A ) ^ -u 1 ) ) ) |
| 235 |
13 18 51 187 26 81
|
divmuldivd |
|- ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 236 |
235
|
eqcomd |
|- ( ph -> ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) |
| 237 |
234 236
|
oveq12d |
|- ( ph -> ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) ) |
| 238 |
237
|
oveq1d |
|- ( ph -> ( ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 239 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 240 |
12 104 239
|
expnegd |
|- ( ph -> ( ( log ` A ) ^ -u 1 ) = ( 1 / ( ( log ` A ) ^ 1 ) ) ) |
| 241 |
240
|
oveq2d |
|- ( ph -> ( 5 x. ( ( log ` A ) ^ -u 1 ) ) = ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) ) |
| 242 |
51 51 3 46 11
|
divdiv1d |
|- ( ph -> ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) = ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) |
| 243 |
242
|
eqcomd |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) |
| 244 |
243
|
oveq2d |
|- ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) |
| 245 |
241 244
|
oveq12d |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) ) |
| 246 |
245
|
oveq1d |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 247 |
12 104 239
|
expne0d |
|- ( ph -> ( ( log ` A ) ^ 1 ) =/= 0 ) |
| 248 |
206 53 156 247
|
divassd |
|- ( ph -> ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) = ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) ) |
| 249 |
248
|
eqcomd |
|- ( ph -> ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) = ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) ) |
| 250 |
51 46
|
dividd |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) = 1 ) |
| 251 |
250
|
oveq1d |
|- ( ph -> ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) = ( 1 / A ) ) |
| 252 |
251
|
oveq2d |
|- ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) = ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) |
| 253 |
249 252
|
oveq12d |
|- ( ph -> ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) = ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) ) |
| 254 |
253
|
oveq1d |
|- ( ph -> ( ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 255 |
206
|
mulridd |
|- ( ph -> ( 5 x. 1 ) = 5 ) |
| 256 |
255
|
oveq1d |
|- ( ph -> ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) = ( 5 / ( ( log ` A ) ^ 1 ) ) ) |
| 257 |
13 18 53 3 26 11
|
divmuldivd |
|- ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) = ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) |
| 258 |
256 257
|
oveq12d |
|- ( ph -> ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) = ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) ) |
| 259 |
258
|
oveq1d |
|- ( ph -> ( ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 260 |
180 13
|
eqeltrd |
|- ( ph -> ( 2 x. 1 ) e. CC ) |
| 261 |
18 3
|
mulcld |
|- ( ph -> ( ( log ` 2 ) x. A ) e. CC ) |
| 262 |
18 3 26 11
|
mulne0d |
|- ( ph -> ( ( log ` 2 ) x. A ) =/= 0 ) |
| 263 |
206 156 260 261 247 262
|
divmuldivd |
|- ( ph -> ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) = ( ( 5 x. ( 2 x. 1 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) |
| 264 |
180
|
oveq2d |
|- ( ph -> ( 5 x. ( 2 x. 1 ) ) = ( 5 x. 2 ) ) |
| 265 |
264
|
oveq1d |
|- ( ph -> ( ( 5 x. ( 2 x. 1 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) = ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) |
| 266 |
263 265
|
eqtrd |
|- ( ph -> ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) = ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) |
| 267 |
266
|
oveq1d |
|- ( ph -> ( ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 268 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
| 269 |
268
|
a1i |
|- ( ph -> ( 5 x. 2 ) = ; 1 0 ) |
| 270 |
269
|
oveq1d |
|- ( ph -> ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) = ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) |
| 271 |
270
|
oveq1d |
|- ( ph -> ( ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 272 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 273 |
272
|
nn0cni |
|- ; 1 0 e. CC |
| 274 |
273
|
a1i |
|- ( ph -> ; 1 0 e. CC ) |
| 275 |
274
|
mulridd |
|- ( ph -> ( ; 1 0 x. 1 ) = ; 1 0 ) |
| 276 |
275
|
oveq1d |
|- ( ph -> ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) |
| 277 |
13 156
|
mulcld |
|- ( ph -> ( 2 x. ( ( log ` A ) ^ 1 ) ) e. CC ) |
| 278 |
277 155 88
|
divcld |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) e. CC ) |
| 279 |
278
|
mullidd |
|- ( ph -> ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) |
| 280 |
276 279
|
oveq12d |
|- ( ph -> ( ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 281 |
18 91
|
expcld |
|- ( ph -> ( ( log ` 2 ) ^ 1 ) e. CC ) |
| 282 |
18 26 239
|
expne0d |
|- ( ph -> ( ( log ` 2 ) ^ 1 ) =/= 0 ) |
| 283 |
277 281 282
|
divcld |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) e. CC ) |
| 284 |
283
|
mulridd |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) |
| 285 |
284
|
oveq2d |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 286 |
|
10re |
|- ; 1 0 e. RR |
| 287 |
286
|
a1i |
|- ( ph -> ; 1 0 e. RR ) |
| 288 |
287 40 104
|
redivcld |
|- ( ph -> ( ; 1 0 / ( log ` A ) ) e. RR ) |
| 289 |
40 43 26
|
redivcld |
|- ( ph -> ( ( log ` A ) / ( log ` 2 ) ) e. RR ) |
| 290 |
289 91
|
reexpcld |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) e. RR ) |
| 291 |
37 290
|
remulcld |
|- ( ph -> ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) e. RR ) |
| 292 |
288 291
|
readdcld |
|- ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) e. RR ) |
| 293 |
287 291
|
readdcld |
|- ( ph -> ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) e. RR ) |
| 294 |
43 112
|
reexpcld |
|- ( ph -> ( ( log ` 2 ) ^ 3 ) e. RR ) |
| 295 |
|
3z |
|- 3 e. ZZ |
| 296 |
295
|
a1i |
|- ( ph -> 3 e. ZZ ) |
| 297 |
18 26 296
|
expne0d |
|- ( ph -> ( ( log ` 2 ) ^ 3 ) =/= 0 ) |
| 298 |
113 294 297
|
redivcld |
|- ( ph -> ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) e. RR ) |
| 299 |
6 298
|
remulcld |
|- ( ph -> ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) e. RR ) |
| 300 |
|
ere |
|- _e e. RR |
| 301 |
300
|
a1i |
|- ( ph -> _e e. RR ) |
| 302 |
112
|
nn0red |
|- ( ph -> 3 e. RR ) |
| 303 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
| 304 |
303
|
simpri |
|- _e < 3 |
| 305 |
304
|
a1i |
|- ( ph -> _e < 3 ) |
| 306 |
|
3lt4 |
|- 3 < 4 |
| 307 |
306
|
a1i |
|- ( ph -> 3 < 4 ) |
| 308 |
302 6 1 307 2
|
ltletrd |
|- ( ph -> 3 < A ) |
| 309 |
301 302 1 305 308
|
lttrd |
|- ( ph -> _e < A ) |
| 310 |
301 1 309
|
ltled |
|- ( ph -> _e <_ A ) |
| 311 |
301 1
|
lenltd |
|- ( ph -> ( _e <_ A <-> -. A < _e ) ) |
| 312 |
310 311
|
mpbid |
|- ( ph -> -. A < _e ) |
| 313 |
|
loglt1b |
|- ( A e. RR+ -> ( ( log ` A ) < 1 <-> A < _e ) ) |
| 314 |
39 313
|
syl |
|- ( ph -> ( ( log ` A ) < 1 <-> A < _e ) ) |
| 315 |
312 314
|
mtbird |
|- ( ph -> -. ( log ` A ) < 1 ) |
| 316 |
38 40
|
lenltd |
|- ( ph -> ( 1 <_ ( log ` A ) <-> -. ( log ` A ) < 1 ) ) |
| 317 |
315 316
|
mpbird |
|- ( ph -> 1 <_ ( log ` A ) ) |
| 318 |
|
10nn |
|- ; 1 0 e. NN |
| 319 |
318
|
a1i |
|- ( ph -> ; 1 0 e. NN ) |
| 320 |
|
nnledivrp |
|- ( ( ; 1 0 e. NN /\ ( log ` A ) e. RR+ ) -> ( 1 <_ ( log ` A ) <-> ( ; 1 0 / ( log ` A ) ) <_ ; 1 0 ) ) |
| 321 |
319 130 320
|
syl2anc |
|- ( ph -> ( 1 <_ ( log ` A ) <-> ( ; 1 0 / ( log ` A ) ) <_ ; 1 0 ) ) |
| 322 |
317 321
|
mpbid |
|- ( ph -> ( ; 1 0 / ( log ` A ) ) <_ ; 1 0 ) |
| 323 |
288 287 291 322
|
leadd1dd |
|- ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) <_ ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) ) |
| 324 |
38 55
|
gtned |
|- ( ph -> 2 =/= 1 ) |
| 325 |
37 15 1 9 324
|
relogbcld |
|- ( ph -> ( 2 logb A ) e. RR ) |
| 326 |
325 91
|
reexpcld |
|- ( ph -> ( ( 2 logb A ) ^ 1 ) e. RR ) |
| 327 |
42 55
|
jca |
|- ( ph -> ( 2 e. RR+ /\ 1 < 2 ) ) |
| 328 |
|
logbgt0b |
|- ( ( A e. RR+ /\ ( 2 e. RR+ /\ 1 < 2 ) ) -> ( 0 < ( 2 logb A ) <-> 1 < A ) ) |
| 329 |
39 327 328
|
syl2anc |
|- ( ph -> ( 0 < ( 2 logb A ) <-> 1 < A ) ) |
| 330 |
99 329
|
mpbird |
|- ( ph -> 0 < ( 2 logb A ) ) |
| 331 |
325 330
|
elrpd |
|- ( ph -> ( 2 logb A ) e. RR+ ) |
| 332 |
331 239
|
rpexpcld |
|- ( ph -> ( ( 2 logb A ) ^ 1 ) e. RR+ ) |
| 333 |
332
|
rpne0d |
|- ( ph -> ( ( 2 logb A ) ^ 1 ) =/= 0 ) |
| 334 |
287 326 333
|
redivcld |
|- ( ph -> ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) e. RR ) |
| 335 |
334 37
|
readdcld |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) e. RR ) |
| 336 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 337 |
336
|
a1i |
|- ( ph -> ( 2 ^ 2 ) = 4 ) |
| 338 |
337 6
|
eqeltrd |
|- ( ph -> ( 2 ^ 2 ) e. RR ) |
| 339 |
6 338
|
remulcld |
|- ( ph -> ( 4 x. ( 2 ^ 2 ) ) e. RR ) |
| 340 |
325
|
resqcld |
|- ( ph -> ( ( 2 logb A ) ^ 2 ) e. RR ) |
| 341 |
6 340
|
remulcld |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) e. RR ) |
| 342 |
325
|
recnd |
|- ( ph -> ( 2 logb A ) e. CC ) |
| 343 |
342
|
exp1d |
|- ( ph -> ( ( 2 logb A ) ^ 1 ) = ( 2 logb A ) ) |
| 344 |
343
|
oveq2d |
|- ( ph -> ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) = ( ; 1 0 / ( 2 logb A ) ) ) |
| 345 |
344
|
oveq1d |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) = ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) ) |
| 346 |
345 335
|
eqeltrrd |
|- ( ph -> ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) e. RR ) |
| 347 |
287
|
rehalfcld |
|- ( ph -> ( ; 1 0 / 2 ) e. RR ) |
| 348 |
347 37
|
readdcld |
|- ( ph -> ( ( ; 1 0 / 2 ) + 2 ) e. RR ) |
| 349 |
344 334
|
eqeltrrd |
|- ( ph -> ( ; 1 0 / ( 2 logb A ) ) e. RR ) |
| 350 |
287 37 17
|
redivcld |
|- ( ph -> ( ; 1 0 / 2 ) e. RR ) |
| 351 |
272
|
nn0ge0i |
|- 0 <_ ; 1 0 |
| 352 |
351
|
a1i |
|- ( ph -> 0 <_ ; 1 0 ) |
| 353 |
42 324 87
|
relogbexpd |
|- ( ph -> ( 2 logb ( 2 ^ 2 ) ) = 2 ) |
| 354 |
353
|
eqcomd |
|- ( ph -> 2 = ( 2 logb ( 2 ^ 2 ) ) ) |
| 355 |
337
|
oveq2d |
|- ( ph -> ( 2 logb ( 2 ^ 2 ) ) = ( 2 logb 4 ) ) |
| 356 |
354 355
|
eqtrd |
|- ( ph -> 2 = ( 2 logb 4 ) ) |
| 357 |
37
|
leidd |
|- ( ph -> 2 <_ 2 ) |
| 358 |
87 357 6 8 1 9 2
|
logblebd |
|- ( ph -> ( 2 logb 4 ) <_ ( 2 logb A ) ) |
| 359 |
356 358
|
eqbrtrd |
|- ( ph -> 2 <_ ( 2 logb A ) ) |
| 360 |
42 331 287 352 359
|
lediv2ad |
|- ( ph -> ( ; 1 0 / ( 2 logb A ) ) <_ ( ; 1 0 / 2 ) ) |
| 361 |
349 350 37 360
|
leadd1dd |
|- ( ph -> ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) <_ ( ( ; 1 0 / 2 ) + 2 ) ) |
| 362 |
|
1nn |
|- 1 e. NN |
| 363 |
|
6nn0 |
|- 6 e. NN0 |
| 364 |
|
2nn0 |
|- 2 e. NN0 |
| 365 |
27 364
|
nn0addcli |
|- ( 5 + 2 ) e. NN0 |
| 366 |
|
5p2e7 |
|- ( 5 + 2 ) = 7 |
| 367 |
|
7re |
|- 7 e. RR |
| 368 |
367 364
|
nn0addge1i |
|- 7 <_ ( 7 + 2 ) |
| 369 |
|
7p2e9 |
|- ( 7 + 2 ) = 9 |
| 370 |
368 369
|
breqtri |
|- 7 <_ 9 |
| 371 |
366 370
|
eqbrtri |
|- ( 5 + 2 ) <_ 9 |
| 372 |
362 363 365 371
|
declei |
|- ( 5 + 2 ) <_ ; 1 6 |
| 373 |
372
|
a1i |
|- ( ph -> ( 5 + 2 ) <_ ; 1 6 ) |
| 374 |
206 13 274 17
|
ldiv |
|- ( ph -> ( ( 5 x. 2 ) = ; 1 0 <-> 5 = ( ; 1 0 / 2 ) ) ) |
| 375 |
269 374
|
mpbid |
|- ( ph -> 5 = ( ; 1 0 / 2 ) ) |
| 376 |
375
|
oveq1d |
|- ( ph -> ( 5 + 2 ) = ( ( ; 1 0 / 2 ) + 2 ) ) |
| 377 |
|
4t4e16 |
|- ( 4 x. 4 ) = ; 1 6 |
| 378 |
377
|
eqcomi |
|- ; 1 6 = ( 4 x. 4 ) |
| 379 |
378
|
a1i |
|- ( ph -> ; 1 6 = ( 4 x. 4 ) ) |
| 380 |
337
|
eqcomd |
|- ( ph -> 4 = ( 2 ^ 2 ) ) |
| 381 |
380
|
oveq2d |
|- ( ph -> ( 4 x. 4 ) = ( 4 x. ( 2 ^ 2 ) ) ) |
| 382 |
379 381
|
eqtrd |
|- ( ph -> ; 1 6 = ( 4 x. ( 2 ^ 2 ) ) ) |
| 383 |
373 376 382
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 / 2 ) + 2 ) <_ ( 4 x. ( 2 ^ 2 ) ) ) |
| 384 |
346 348 339 361 383
|
letrd |
|- ( ph -> ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) <_ ( 4 x. ( 2 ^ 2 ) ) ) |
| 385 |
345 384
|
eqbrtrd |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) <_ ( 4 x. ( 2 ^ 2 ) ) ) |
| 386 |
4 6 8
|
ltled |
|- ( ph -> 0 <_ 4 ) |
| 387 |
364
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 388 |
37 325 387 124 359
|
leexp1ad |
|- ( ph -> ( 2 ^ 2 ) <_ ( ( 2 logb A ) ^ 2 ) ) |
| 389 |
338 340 6 386 388
|
lemul2ad |
|- ( ph -> ( 4 x. ( 2 ^ 2 ) ) <_ ( 4 x. ( ( 2 logb A ) ^ 2 ) ) ) |
| 390 |
335 339 341 385 389
|
letrd |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) <_ ( 4 x. ( ( 2 logb A ) ^ 2 ) ) ) |
| 391 |
37 326
|
remulcld |
|- ( ph -> ( 2 x. ( ( 2 logb A ) ^ 1 ) ) e. RR ) |
| 392 |
391
|
recnd |
|- ( ph -> ( 2 x. ( ( 2 logb A ) ^ 1 ) ) e. CC ) |
| 393 |
326
|
recnd |
|- ( ph -> ( ( 2 logb A ) ^ 1 ) e. CC ) |
| 394 |
274 392 393 333
|
divdird |
|- ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) ) |
| 395 |
13 393 393 333
|
divassd |
|- ( ph -> ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) |
| 396 |
395
|
oveq2d |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) ) |
| 397 |
393 333
|
dividd |
|- ( ph -> ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) = 1 ) |
| 398 |
397
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( 2 x. 1 ) ) |
| 399 |
398 180
|
eqtrd |
|- ( ph -> ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) = 2 ) |
| 400 |
399
|
oveq2d |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) ) |
| 401 |
396 400
|
eqtrd |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) ) |
| 402 |
394 401
|
eqtrd |
|- ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) ) |
| 403 |
402
|
eqcomd |
|- ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) = ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) ) |
| 404 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 405 |
404
|
a1i |
|- ( ph -> ( 2 + 1 ) = 3 ) |
| 406 |
302
|
recnd |
|- ( ph -> 3 e. CC ) |
| 407 |
406 53 13
|
subadd2d |
|- ( ph -> ( ( 3 - 1 ) = 2 <-> ( 2 + 1 ) = 3 ) ) |
| 408 |
405 407
|
mpbird |
|- ( ph -> ( 3 - 1 ) = 2 ) |
| 409 |
408
|
eqcomd |
|- ( ph -> 2 = ( 3 - 1 ) ) |
| 410 |
409
|
oveq2d |
|- ( ph -> ( ( 2 logb A ) ^ 2 ) = ( ( 2 logb A ) ^ ( 3 - 1 ) ) ) |
| 411 |
410
|
oveq2d |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) = ( 4 x. ( ( 2 logb A ) ^ ( 3 - 1 ) ) ) ) |
| 412 |
4 330
|
gtned |
|- ( ph -> ( 2 logb A ) =/= 0 ) |
| 413 |
342 412 239 296
|
expsubd |
|- ( ph -> ( ( 2 logb A ) ^ ( 3 - 1 ) ) = ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) |
| 414 |
413
|
oveq2d |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ ( 3 - 1 ) ) ) = ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) |
| 415 |
411 414
|
eqtrd |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) = ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) |
| 416 |
217
|
a1i |
|- ( ph -> 4 e. CC ) |
| 417 |
325 112
|
reexpcld |
|- ( ph -> ( ( 2 logb A ) ^ 3 ) e. RR ) |
| 418 |
417
|
recnd |
|- ( ph -> ( ( 2 logb A ) ^ 3 ) e. CC ) |
| 419 |
416 418 393 333
|
divassd |
|- ( ph -> ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) |
| 420 |
419
|
eqcomd |
|- ( ph -> ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) |
| 421 |
415 420
|
eqtrd |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) = ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) |
| 422 |
390 403 421
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) <_ ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) |
| 423 |
287 391
|
readdcld |
|- ( ph -> ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) e. RR ) |
| 424 |
6 417
|
remulcld |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ 3 ) ) e. RR ) |
| 425 |
423 424 332
|
lediv1d |
|- ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) <_ ( 4 x. ( ( 2 logb A ) ^ 3 ) ) <-> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) <_ ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) ) |
| 426 |
422 425
|
mpbird |
|- ( ph -> ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) <_ ( 4 x. ( ( 2 logb A ) ^ 3 ) ) ) |
| 427 |
87
|
uzidd |
|- ( ph -> 2 e. ( ZZ>= ` 2 ) ) |
| 428 |
427 39
|
jca |
|- ( ph -> ( 2 e. ( ZZ>= ` 2 ) /\ A e. RR+ ) ) |
| 429 |
|
relogbval |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( 2 logb A ) = ( ( log ` A ) / ( log ` 2 ) ) ) |
| 430 |
428 429
|
syl |
|- ( ph -> ( 2 logb A ) = ( ( log ` A ) / ( log ` 2 ) ) ) |
| 431 |
430
|
oveq1d |
|- ( ph -> ( ( 2 logb A ) ^ 1 ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) |
| 432 |
431
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 2 logb A ) ^ 1 ) ) = ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) |
| 433 |
432
|
oveq2d |
|- ( ph -> ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) = ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) ) |
| 434 |
430
|
oveq1d |
|- ( ph -> ( ( 2 logb A ) ^ 3 ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 3 ) ) |
| 435 |
12 18 26 112
|
expdivd |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 3 ) = ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) |
| 436 |
434 435
|
eqtrd |
|- ( ph -> ( ( 2 logb A ) ^ 3 ) = ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) |
| 437 |
436
|
oveq2d |
|- ( ph -> ( 4 x. ( ( 2 logb A ) ^ 3 ) ) = ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) ) |
| 438 |
426 433 437
|
3brtr3d |
|- ( ph -> ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) <_ ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) ) |
| 439 |
292 293 299 323 438
|
letrd |
|- ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) <_ ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) ) |
| 440 |
12
|
exp1d |
|- ( ph -> ( ( log ` A ) ^ 1 ) = ( log ` A ) ) |
| 441 |
440
|
eqcomd |
|- ( ph -> ( log ` A ) = ( ( log ` A ) ^ 1 ) ) |
| 442 |
441
|
oveq2d |
|- ( ph -> ( ; 1 0 / ( log ` A ) ) = ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) ) |
| 443 |
13 156 281 282
|
divassd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) = ( 2 x. ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 444 |
12 18 26 91
|
expdivd |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) = ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) |
| 445 |
444
|
eqcomd |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) |
| 446 |
445
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) = ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) |
| 447 |
443 446
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) = ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) |
| 448 |
447
|
eqcomd |
|- ( ph -> ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) |
| 449 |
442 448
|
oveq12d |
|- ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 450 |
113
|
recnd |
|- ( ph -> ( ( log ` A ) ^ 3 ) e. CC ) |
| 451 |
18 112
|
expcld |
|- ( ph -> ( ( log ` 2 ) ^ 3 ) e. CC ) |
| 452 |
416 450 451 297
|
divassd |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) = ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) ) |
| 453 |
452
|
eqcomd |
|- ( ph -> ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) ) |
| 454 |
439 449 453
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) ) |
| 455 |
285 454
|
eqbrtrd |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) ) |
| 456 |
281 282
|
dividd |
|- ( ph -> ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) = 1 ) |
| 457 |
456
|
eqcomd |
|- ( ph -> 1 = ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) |
| 458 |
457
|
oveq2d |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 459 |
277 281 281 281 282 282
|
divmuldivd |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 460 |
458 459
|
eqtrd |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 461 |
460
|
oveq2d |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) ) |
| 462 |
416 450
|
mulcld |
|- ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) e. CC ) |
| 463 |
462 451 297
|
divcld |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) e. CC ) |
| 464 |
463
|
mulridd |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) ) |
| 465 |
464
|
eqcomd |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) ) |
| 466 |
455 461 465
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) ) |
| 467 |
274 156 247
|
divcld |
|- ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) e. CC ) |
| 468 |
467
|
mulridd |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. 1 ) = ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) ) |
| 469 |
468
|
eqcomd |
|- ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. 1 ) ) |
| 470 |
18 26
|
dividd |
|- ( ph -> ( ( log ` 2 ) / ( log ` 2 ) ) = 1 ) |
| 471 |
470
|
eqcomd |
|- ( ph -> 1 = ( ( log ` 2 ) / ( log ` 2 ) ) ) |
| 472 |
471
|
oveq2d |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. 1 ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) / ( log ` 2 ) ) ) ) |
| 473 |
469 472
|
eqtrd |
|- ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) / ( log ` 2 ) ) ) ) |
| 474 |
274 156 18 18 247 26
|
divmuldivd |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) / ( log ` 2 ) ) ) = ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) |
| 475 |
473 474
|
eqtrd |
|- ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) = ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) |
| 476 |
18
|
exp1d |
|- ( ph -> ( ( log ` 2 ) ^ 1 ) = ( log ` 2 ) ) |
| 477 |
476
|
oveq2d |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) ) |
| 478 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 479 |
478
|
a1i |
|- ( ph -> 2 = ( 1 + 1 ) ) |
| 480 |
479
|
oveq2d |
|- ( ph -> ( ( log ` 2 ) ^ 2 ) = ( ( log ` 2 ) ^ ( 1 + 1 ) ) ) |
| 481 |
18 91 91
|
expaddd |
|- ( ph -> ( ( log ` 2 ) ^ ( 1 + 1 ) ) = ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) |
| 482 |
480 481
|
eqtrd |
|- ( ph -> ( ( log ` 2 ) ^ 2 ) = ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) |
| 483 |
482
|
eqcomd |
|- ( ph -> ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( log ` 2 ) ^ 2 ) ) |
| 484 |
477 483
|
oveq12d |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) |
| 485 |
475 484
|
oveq12d |
|- ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) = ( ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 486 |
476
|
eqcomd |
|- ( ph -> ( log ` 2 ) = ( ( log ` 2 ) ^ 1 ) ) |
| 487 |
486
|
oveq2d |
|- ( ph -> ( ( log ` 2 ) / ( log ` 2 ) ) = ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) ) |
| 488 |
471 487
|
eqtrd |
|- ( ph -> 1 = ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) ) |
| 489 |
488
|
oveq2d |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 490 |
476 18
|
eqeltrd |
|- ( ph -> ( ( log ` 2 ) ^ 1 ) e. CC ) |
| 491 |
476 26
|
eqnetrd |
|- ( ph -> ( ( log ` 2 ) ^ 1 ) =/= 0 ) |
| 492 |
462 451 18 490 297 491
|
divmuldivd |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 493 |
489 492
|
eqtrd |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 494 |
466 485 493
|
3brtr3d |
|- ( ph -> ( ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) |
| 495 |
156 18
|
mulcld |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) e. CC ) |
| 496 |
156 18 247 26
|
mulne0d |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) =/= 0 ) |
| 497 |
274 18 495 496
|
div23d |
|- ( ph -> ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) ) |
| 498 |
277 18 155 88
|
div23d |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) |
| 499 |
497 498
|
oveq12d |
|- ( ph -> ( ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) ) |
| 500 |
62
|
a1i |
|- ( ph -> 4 = ( 3 + 1 ) ) |
| 501 |
500
|
oveq2d |
|- ( ph -> ( ( log ` 2 ) ^ 4 ) = ( ( log ` 2 ) ^ ( 3 + 1 ) ) ) |
| 502 |
18 91 112
|
expaddd |
|- ( ph -> ( ( log ` 2 ) ^ ( 3 + 1 ) ) = ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) |
| 503 |
501 502
|
eqtrd |
|- ( ph -> ( ( log ` 2 ) ^ 4 ) = ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) |
| 504 |
503
|
eqcomd |
|- ( ph -> ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( log ` 2 ) ^ 4 ) ) |
| 505 |
504
|
oveq2d |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 506 |
494 499 505
|
3brtr3d |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 507 |
92 43
|
remulcld |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) e. RR ) |
| 508 |
287 507 496
|
redivcld |
|- ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) e. RR ) |
| 509 |
508
|
recnd |
|- ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) e. CC ) |
| 510 |
509 278 18
|
adddird |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) ) |
| 511 |
510
|
eqcomd |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) ) |
| 512 |
18 26 212
|
expne0d |
|- ( ph -> ( ( log ` 2 ) ^ 4 ) =/= 0 ) |
| 513 |
462 18 117 512
|
div23d |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( log ` 2 ) ) ) |
| 514 |
506 511 513
|
3brtr3d |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( log ` 2 ) ) ) |
| 515 |
37 92
|
remulcld |
|- ( ph -> ( 2 x. ( ( log ` A ) ^ 1 ) ) e. RR ) |
| 516 |
515 85 88
|
redivcld |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) e. RR ) |
| 517 |
508 516
|
readdcld |
|- ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) e. RR ) |
| 518 |
114 115 120
|
redivcld |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) e. RR ) |
| 519 |
517 518 135
|
lemul1d |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) <-> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( log ` 2 ) ) ) ) |
| 520 |
514 519
|
mpbird |
|- ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 521 |
280 520
|
eqbrtrd |
|- ( ph -> ( ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 522 |
274 53 495 496
|
divassd |
|- ( ph -> ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) |
| 523 |
53 277 155 88
|
div12d |
|- ( ph -> ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 524 |
522 523
|
oveq12d |
|- ( ph -> ( ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) ) |
| 525 |
462
|
mulridd |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) = ( 4 x. ( ( log ` A ) ^ 3 ) ) ) |
| 526 |
525
|
eqcomd |
|- ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) ) |
| 527 |
526
|
oveq1d |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 528 |
521 524 527
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 529 |
3 11
|
dividd |
|- ( ph -> ( A / A ) = 1 ) |
| 530 |
529
|
eqcomd |
|- ( ph -> 1 = ( A / A ) ) |
| 531 |
530
|
oveq1d |
|- ( ph -> ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( A / A ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) |
| 532 |
3 3 495 11 496
|
divdiv1d |
|- ( ph -> ( ( A / A ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) |
| 533 |
531 532
|
eqtrd |
|- ( ph -> ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) |
| 534 |
533
|
oveq2d |
|- ( ph -> ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) = ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) ) |
| 535 |
|
eqidd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 536 |
530
|
oveq1d |
|- ( ph -> ( 1 / ( ( log ` 2 ) ^ 2 ) ) = ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) |
| 537 |
536
|
oveq2d |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 538 |
535 537
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 539 |
534 538
|
oveq12d |
|- ( ph -> ( ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) ) |
| 540 |
462 53 117 512
|
divassd |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) ) |
| 541 |
528 539 540
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) ) |
| 542 |
3 495
|
mulcomd |
|- ( ph -> ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) x. A ) ) |
| 543 |
156 18 3
|
mulassd |
|- ( ph -> ( ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) x. A ) = ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) |
| 544 |
542 543
|
eqtrd |
|- ( ph -> ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) |
| 545 |
544
|
oveq2d |
|- ( ph -> ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) = ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) |
| 546 |
545
|
oveq2d |
|- ( ph -> ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) = ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) ) |
| 547 |
3 3 155 11 88
|
divdiv1d |
|- ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) = ( A / ( A x. ( ( log ` 2 ) ^ 2 ) ) ) ) |
| 548 |
3 155
|
mulcomd |
|- ( ph -> ( A x. ( ( log ` 2 ) ^ 2 ) ) = ( ( ( log ` 2 ) ^ 2 ) x. A ) ) |
| 549 |
548
|
oveq2d |
|- ( ph -> ( A / ( A x. ( ( log ` 2 ) ^ 2 ) ) ) = ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) |
| 550 |
547 549
|
eqtrd |
|- ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) = ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) |
| 551 |
550
|
oveq2d |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 552 |
546 551
|
oveq12d |
|- ( ph -> ( ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) ) |
| 553 |
|
eqidd |
|- ( ph -> ( 1 / ( ( log ` 2 ) ^ 4 ) ) = ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) |
| 554 |
530
|
oveq1d |
|- ( ph -> ( 1 / ( ( log ` 2 ) ^ 4 ) ) = ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 555 |
553 554
|
eqtrd |
|- ( ph -> ( 1 / ( ( log ` 2 ) ^ 4 ) ) = ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 556 |
555
|
oveq2d |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) ) |
| 557 |
541 552 556
|
3brtr3d |
|- ( ph -> ( ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) ) |
| 558 |
156 261
|
mulcld |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) e. CC ) |
| 559 |
156 261 247 262
|
mulne0d |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) =/= 0 ) |
| 560 |
274 558 3 559
|
div32d |
|- ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) = ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) ) |
| 561 |
560
|
eqcomd |
|- ( ph -> ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) ) |
| 562 |
155 3
|
mulcld |
|- ( ph -> ( ( ( log ` 2 ) ^ 2 ) x. A ) e. CC ) |
| 563 |
155 3 88 11
|
mulne0d |
|- ( ph -> ( ( ( log ` 2 ) ^ 2 ) x. A ) =/= 0 ) |
| 564 |
277 562 3 563
|
div32d |
|- ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) |
| 565 |
564
|
eqcomd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) |
| 566 |
561 565
|
oveq12d |
|- ( ph -> ( ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) ) |
| 567 |
3 3 117 11 512
|
divdiv1d |
|- ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) = ( A / ( A x. ( ( log ` 2 ) ^ 4 ) ) ) ) |
| 568 |
3 117
|
mulcomd |
|- ( ph -> ( A x. ( ( log ` 2 ) ^ 4 ) ) = ( ( ( log ` 2 ) ^ 4 ) x. A ) ) |
| 569 |
568
|
oveq2d |
|- ( ph -> ( A / ( A x. ( ( log ` 2 ) ^ 4 ) ) ) = ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 570 |
567 569
|
eqtrd |
|- ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) = ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 571 |
570
|
oveq2d |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) ) |
| 572 |
557 566 571
|
3brtr3d |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) ) |
| 573 |
43 1
|
remulcld |
|- ( ph -> ( ( log ` 2 ) x. A ) e. RR ) |
| 574 |
92 573
|
remulcld |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) e. RR ) |
| 575 |
287 574 559
|
redivcld |
|- ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) e. RR ) |
| 576 |
575
|
recnd |
|- ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) e. CC ) |
| 577 |
157 94
|
eqeltrrd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) e. RR ) |
| 578 |
577
|
recnd |
|- ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) e. CC ) |
| 579 |
576 578 3
|
adddird |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) ) |
| 580 |
579
|
eqcomd |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) ) |
| 581 |
12 112
|
expcld |
|- ( ph -> ( ( log ` A ) ^ 3 ) e. CC ) |
| 582 |
416 581
|
mulcld |
|- ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) e. CC ) |
| 583 |
117 3
|
mulcld |
|- ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) e. CC ) |
| 584 |
117 3 512 11
|
mulne0d |
|- ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) =/= 0 ) |
| 585 |
582 583 3 584
|
div32d |
|- ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) ) |
| 586 |
585
|
eqcomd |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) ) |
| 587 |
572 580 586
|
3brtr3d |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) ) |
| 588 |
575 577
|
readdcld |
|- ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) e. RR ) |
| 589 |
588 122 39
|
lemul1d |
|- ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) <-> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) ) ) |
| 590 |
587 589
|
mpbird |
|- ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 591 |
271 590
|
eqbrtrd |
|- ( ph -> ( ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 592 |
267 591
|
eqbrtrd |
|- ( ph -> ( ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 593 |
259 592
|
eqbrtrd |
|- ( ph -> ( ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 594 |
254 593
|
eqbrtrd |
|- ( ph -> ( ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 595 |
246 594
|
eqbrtrd |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 596 |
238 595
|
eqbrtrd |
|- ( ph -> ( ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 597 |
211 596
|
eqbrtrd |
|- ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 598 |
205 597
|
eqbrtrd |
|- ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 599 |
198 598
|
eqbrtrd |
|- ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 600 |
192 599
|
eqbrtrd |
|- ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 601 |
189 600
|
eqbrtrd |
|- ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 602 |
184 601
|
eqbrtrd |
|- ( ph -> ( ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 603 |
179 602
|
eqbrtrd |
|- ( ph -> ( ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 604 |
174 603
|
eqbrtrd |
|- ( ph -> ( ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 605 |
170 604
|
eqbrtrd |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 606 |
158 605
|
eqbrtrd |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 607 |
95 111 122 149 606
|
letrd |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 608 |
35 607
|
eqbrtrd |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 609 |
427 39 429
|
syl2anc |
|- ( ph -> ( 2 logb A ) = ( ( log ` A ) / ( log ` 2 ) ) ) |
| 610 |
609
|
eqcomd |
|- ( ph -> ( ( log ` A ) / ( log ` 2 ) ) = ( 2 logb A ) ) |
| 611 |
610
|
oveq1d |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) = ( ( 2 logb A ) ^ 5 ) ) |
| 612 |
611
|
oveq1d |
|- ( ph -> ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) = ( ( ( 2 logb A ) ^ 5 ) + 1 ) ) |
| 613 |
612
|
oveq1d |
|- ( ph -> ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) = ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) |
| 614 |
613
|
oveq2d |
|- ( ph -> ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) ) |
| 615 |
|
5cn |
|- 5 e. CC |
| 616 |
615
|
a1i |
|- ( ph -> 5 e. CC ) |
| 617 |
616 207
|
mulcld |
|- ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) e. CC ) |
| 618 |
617
|
mulridd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) = ( 5 x. ( ( log ` A ) ^ 4 ) ) ) |
| 619 |
618
|
eqcomd |
|- ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) = ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) ) |
| 620 |
|
eqidd |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( log ` 2 ) ^ 5 ) x. A ) ) |
| 621 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 622 |
621
|
a1i |
|- ( ph -> 5 = ( 4 + 1 ) ) |
| 623 |
622
|
oveq2d |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) = ( ( log ` 2 ) ^ ( 4 + 1 ) ) ) |
| 624 |
18 91 77
|
expaddd |
|- ( ph -> ( ( log ` 2 ) ^ ( 4 + 1 ) ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) ^ 1 ) ) ) |
| 625 |
623 624
|
eqtrd |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) ^ 1 ) ) ) |
| 626 |
476
|
oveq2d |
|- ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) ) |
| 627 |
625 626
|
eqtrd |
|- ( ph -> ( ( log ` 2 ) ^ 5 ) = ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) ) |
| 628 |
627
|
oveq1d |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) x. A ) ) |
| 629 |
620 628
|
eqtrd |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) x. A ) ) |
| 630 |
117 18 3
|
mulassd |
|- ( ph -> ( ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) x. A ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) x. A ) ) ) |
| 631 |
629 630
|
eqtrd |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) x. A ) ) ) |
| 632 |
18 3
|
mulcomd |
|- ( ph -> ( ( log ` 2 ) x. A ) = ( A x. ( log ` 2 ) ) ) |
| 633 |
632
|
oveq2d |
|- ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) x. A ) ) = ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) |
| 634 |
631 633
|
eqtrd |
|- ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) |
| 635 |
619 634
|
oveq12d |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) / ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) ) |
| 636 |
3 18
|
mulcld |
|- ( ph -> ( A x. ( log ` 2 ) ) e. CC ) |
| 637 |
3 18 11 26
|
mulne0d |
|- ( ph -> ( A x. ( log ` 2 ) ) =/= 0 ) |
| 638 |
186 117 53 636 120 637
|
divmuldivd |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) / ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) ) |
| 639 |
638
|
eqcomd |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) / ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 640 |
635 639
|
eqtrd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 641 |
206 207 117 120
|
divassd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) = ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) ) |
| 642 |
641
|
oveq1d |
|- ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 643 |
640 642
|
eqtrd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 644 |
12 18 26 77
|
expdivd |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) = ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) |
| 645 |
644
|
eqcomd |
|- ( ph -> ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) |
| 646 |
645
|
oveq2d |
|- ( ph -> ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) = ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) ) |
| 647 |
646
|
oveq1d |
|- ( ph -> ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 648 |
643 647
|
eqtrd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 649 |
610
|
oveq1d |
|- ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) = ( ( 2 logb A ) ^ 4 ) ) |
| 650 |
649
|
oveq2d |
|- ( ph -> ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) = ( 5 x. ( ( 2 logb A ) ^ 4 ) ) ) |
| 651 |
650
|
oveq1d |
|- ( ph -> ( ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 652 |
648 651
|
eqtrd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 653 |
342 77
|
expcld |
|- ( ph -> ( ( 2 logb A ) ^ 4 ) e. CC ) |
| 654 |
616 653
|
mulcld |
|- ( ph -> ( 5 x. ( ( 2 logb A ) ^ 4 ) ) e. CC ) |
| 655 |
39
|
rpne0d |
|- ( ph -> A =/= 0 ) |
| 656 |
3 18 655 26
|
mulne0d |
|- ( ph -> ( A x. ( log ` 2 ) ) =/= 0 ) |
| 657 |
636 656
|
reccld |
|- ( ph -> ( 1 / ( A x. ( log ` 2 ) ) ) e. CC ) |
| 658 |
654 657
|
mulcld |
|- ( ph -> ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) e. CC ) |
| 659 |
658
|
addridd |
|- ( ph -> ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) = ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) ) |
| 660 |
659
|
eqcomd |
|- ( ph -> ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) |
| 661 |
652 660
|
eqtrd |
|- ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) |
| 662 |
614 661
|
oveq12d |
|- ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) |
| 663 |
662
|
oveq2d |
|- ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) ) |
| 664 |
|
1e2m1 |
|- 1 = ( 2 - 1 ) |
| 665 |
664
|
a1i |
|- ( ph -> 1 = ( 2 - 1 ) ) |
| 666 |
665
|
oveq2d |
|- ( ph -> ( ( log ` A ) ^ 1 ) = ( ( log ` A ) ^ ( 2 - 1 ) ) ) |
| 667 |
666
|
oveq1d |
|- ( ph -> ( ( ( log ` A ) ^ 1 ) / A ) = ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) |
| 668 |
667
|
oveq2d |
|- ( ph -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) = ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) ) |
| 669 |
663 668
|
oveq12d |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) = ( ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) ) ) |
| 670 |
|
4cn |
|- 4 e. CC |
| 671 |
670
|
a1i |
|- ( ph -> 4 e. CC ) |
| 672 |
671 117 581 3 120 655
|
divmuldivd |
|- ( ph -> ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) |
| 673 |
672
|
eqcomd |
|- ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) = ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) ) |
| 674 |
608 669 673
|
3brtr3d |
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) ) <_ ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) ) |