Metamath Proof Explorer


Theorem aks4d1p1p7

Description: Bound of intermediary of inequality step. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p7.1
|- ( ph -> A e. RR )
aks4d1p1p7.2
|- ( ph -> 4 <_ A )
Assertion aks4d1p1p7
|- ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) ) <_ ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) )

Proof

Step Hyp Ref Expression
1 aks4d1p1p7.1
 |-  ( ph -> A e. RR )
2 aks4d1p1p7.2
 |-  ( ph -> 4 <_ A )
3 1 recnd
 |-  ( ph -> A e. CC )
4 0red
 |-  ( ph -> 0 e. RR )
5 4re
 |-  4 e. RR
6 5 a1i
 |-  ( ph -> 4 e. RR )
7 4pos
 |-  0 < 4
8 7 a1i
 |-  ( ph -> 0 < 4 )
9 4 6 1 8 2 ltletrd
 |-  ( ph -> 0 < A )
10 4 9 ltned
 |-  ( ph -> 0 =/= A )
11 10 necomd
 |-  ( ph -> A =/= 0 )
12 3 11 logcld
 |-  ( ph -> ( log ` A ) e. CC )
13 2cnd
 |-  ( ph -> 2 e. CC )
14 2pos
 |-  0 < 2
15 14 a1i
 |-  ( ph -> 0 < 2 )
16 4 15 ltned
 |-  ( ph -> 0 =/= 2 )
17 16 necomd
 |-  ( ph -> 2 =/= 0 )
18 13 17 logcld
 |-  ( ph -> ( log ` 2 ) e. CC )
19 1lt2
 |-  1 < 2
20 2rp
 |-  2 e. RR+
21 loggt0b
 |-  ( 2 e. RR+ -> ( 0 < ( log ` 2 ) <-> 1 < 2 ) )
22 20 21 ax-mp
 |-  ( 0 < ( log ` 2 ) <-> 1 < 2 )
23 19 22 mpbir
 |-  0 < ( log ` 2 )
24 23 a1i
 |-  ( ph -> 0 < ( log ` 2 ) )
25 4 24 ltned
 |-  ( ph -> 0 =/= ( log ` 2 ) )
26 25 necomd
 |-  ( ph -> ( log ` 2 ) =/= 0 )
27 5nn0
 |-  5 e. NN0
28 27 a1i
 |-  ( ph -> 5 e. NN0 )
29 12 18 26 28 expdivd
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) = ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) )
30 29 oveq1d
 |-  ( ph -> ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) = ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) )
31 30 oveq1d
 |-  ( ph -> ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) = ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) )
32 31 oveq2d
 |-  ( ph -> ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) )
33 32 oveq1d
 |-  ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
34 33 oveq2d
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
35 34 oveq1d
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) = ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) )
36 2re
 |-  2 e. RR
37 36 a1i
 |-  ( ph -> 2 e. RR )
38 1red
 |-  ( ph -> 1 e. RR )
39 1 9 elrpd
 |-  ( ph -> A e. RR+ )
40 39 relogcld
 |-  ( ph -> ( log ` A ) e. RR )
41 40 28 reexpcld
 |-  ( ph -> ( ( log ` A ) ^ 5 ) e. RR )
42 20 a1i
 |-  ( ph -> 2 e. RR+ )
43 42 relogcld
 |-  ( ph -> ( log ` 2 ) e. RR )
44 43 28 reexpcld
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) e. RR )
45 28 nn0zd
 |-  ( ph -> 5 e. ZZ )
46 18 26 45 expne0d
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) =/= 0 )
47 41 44 46 redivcld
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) e. RR )
48 47 38 readdcld
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) e. RR )
49 48 43 remulcld
 |-  ( ph -> ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) e. RR )
50 12 28 expcld
 |-  ( ph -> ( ( log ` A ) ^ 5 ) e. CC )
51 18 28 expcld
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) e. CC )
52 50 51 46 divcld
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) e. CC )
53 1cnd
 |-  ( ph -> 1 e. CC )
54 52 53 addcld
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) e. CC )
55 19 a1i
 |-  ( ph -> 1 < 2 )
56 37 55 rplogcld
 |-  ( ph -> ( log ` 2 ) e. RR+ )
57 56 45 rpexpcld
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) e. RR+ )
58 1re
 |-  1 e. RR
59 3nn0
 |-  3 e. NN0
60 58 59 nn0addge2i
 |-  1 <_ ( 3 + 1 )
61 60 a1i
 |-  ( ph -> 1 <_ ( 3 + 1 ) )
62 df-4
 |-  4 = ( 3 + 1 )
63 61 62 breqtrrdi
 |-  ( ph -> 1 <_ 4 )
64 38 6 1 63 2 letrd
 |-  ( ph -> 1 <_ A )
65 1 64 logge0d
 |-  ( ph -> 0 <_ ( log ` A ) )
66 40 28 65 expge0d
 |-  ( ph -> 0 <_ ( ( log ` A ) ^ 5 ) )
67 41 57 66 divge0d
 |-  ( ph -> 0 <_ ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) )
68 47 ltp1d
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) < ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) )
69 4 47 48 67 68 lelttrd
 |-  ( ph -> 0 < ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) )
70 4 69 ltned
 |-  ( ph -> 0 =/= ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) )
71 70 necomd
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) =/= 0 )
72 54 18 71 26 mulne0d
 |-  ( ph -> ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) =/= 0 )
73 38 49 72 redivcld
 |-  ( ph -> ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) e. RR )
74 5re
 |-  5 e. RR
75 74 a1i
 |-  ( ph -> 5 e. RR )
76 4nn0
 |-  4 e. NN0
77 76 a1i
 |-  ( ph -> 4 e. NN0 )
78 40 77 reexpcld
 |-  ( ph -> ( ( log ` A ) ^ 4 ) e. RR )
79 75 78 remulcld
 |-  ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) e. RR )
80 44 1 remulcld
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) e. RR )
81 51 3 46 11 mulne0d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) =/= 0 )
82 79 80 81 redivcld
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) e. RR )
83 73 82 remulcld
 |-  ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) e. RR )
84 37 83 remulcld
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) e. RR )
85 43 resqcld
 |-  ( ph -> ( ( log ` 2 ) ^ 2 ) e. RR )
86 2z
 |-  2 e. ZZ
87 86 a1i
 |-  ( ph -> 2 e. ZZ )
88 18 26 87 expne0d
 |-  ( ph -> ( ( log ` 2 ) ^ 2 ) =/= 0 )
89 37 85 88 redivcld
 |-  ( ph -> ( 2 / ( ( log ` 2 ) ^ 2 ) ) e. RR )
90 1nn0
 |-  1 e. NN0
91 90 a1i
 |-  ( ph -> 1 e. NN0 )
92 40 91 reexpcld
 |-  ( ph -> ( ( log ` A ) ^ 1 ) e. RR )
93 92 1 11 redivcld
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) / A ) e. RR )
94 89 93 remulcld
 |-  ( ph -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) e. RR )
95 84 94 readdcld
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) e. RR )
96 47 43 remulcld
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) e. RR )
97 1lt4
 |-  1 < 4
98 97 a1i
 |-  ( ph -> 1 < 4 )
99 38 6 1 98 2 ltletrd
 |-  ( ph -> 1 < A )
100 loggt0b
 |-  ( A e. RR+ -> ( 0 < ( log ` A ) <-> 1 < A ) )
101 39 100 syl
 |-  ( ph -> ( 0 < ( log ` A ) <-> 1 < A ) )
102 99 101 mpbird
 |-  ( ph -> 0 < ( log ` A ) )
103 4 102 ltned
 |-  ( ph -> 0 =/= ( log ` A ) )
104 103 necomd
 |-  ( ph -> ( log ` A ) =/= 0 )
105 12 104 45 expne0d
 |-  ( ph -> ( ( log ` A ) ^ 5 ) =/= 0 )
106 50 51 105 46 divne0d
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) =/= 0 )
107 52 18 106 26 mulne0d
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) =/= 0 )
108 38 96 107 redivcld
 |-  ( ph -> ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) e. RR )
109 108 82 remulcld
 |-  ( ph -> ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) e. RR )
110 37 109 remulcld
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) e. RR )
111 110 94 readdcld
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) e. RR )
112 59 a1i
 |-  ( ph -> 3 e. NN0 )
113 40 112 reexpcld
 |-  ( ph -> ( ( log ` A ) ^ 3 ) e. RR )
114 6 113 remulcld
 |-  ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) e. RR )
115 43 77 reexpcld
 |-  ( ph -> ( ( log ` 2 ) ^ 4 ) e. RR )
116 115 1 remulcld
 |-  ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) e. RR )
117 18 77 expcld
 |-  ( ph -> ( ( log ` 2 ) ^ 4 ) e. CC )
118 4z
 |-  4 e. ZZ
119 118 a1i
 |-  ( ph -> 4 e. ZZ )
120 18 26 119 expne0d
 |-  ( ph -> ( ( log ` 2 ) ^ 4 ) =/= 0 )
121 117 3 120 11 mulne0d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) =/= 0 )
122 114 116 121 redivcld
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) e. RR )
123 0le2
 |-  0 <_ 2
124 123 a1i
 |-  ( ph -> 0 <_ 2 )
125 57 39 rpmulcld
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) e. RR+ )
126 28 nn0ge0d
 |-  ( ph -> 0 <_ 5 )
127 40 77 65 expge0d
 |-  ( ph -> 0 <_ ( ( log ` A ) ^ 4 ) )
128 75 78 126 127 mulge0d
 |-  ( ph -> 0 <_ ( 5 x. ( ( log ` A ) ^ 4 ) ) )
129 79 125 128 divge0d
 |-  ( ph -> 0 <_ ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) )
130 1 99 rplogcld
 |-  ( ph -> ( log ` A ) e. RR+ )
131 130 45 rpexpcld
 |-  ( ph -> ( ( log ` A ) ^ 5 ) e. RR+ )
132 131 57 rpdivcld
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) e. RR+ )
133 132 56 rpmulcld
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) e. RR+ )
134 24 22 sylib
 |-  ( ph -> 1 < 2 )
135 37 134 rplogcld
 |-  ( ph -> ( log ` 2 ) e. RR+ )
136 135 45 rpexpcld
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) e. RR+ )
137 41 136 66 divge0d
 |-  ( ph -> 0 <_ ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) )
138 47 137 ge0p1rpd
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) e. RR+ )
139 138 135 rpmulcld
 |-  ( ph -> ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) e. RR+ )
140 0le1
 |-  0 <_ 1
141 140 a1i
 |-  ( ph -> 0 <_ 1 )
142 135 rpred
 |-  ( ph -> ( log ` 2 ) e. RR )
143 135 rpge0d
 |-  ( ph -> 0 <_ ( log ` 2 ) )
144 47 lep1d
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) <_ ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) )
145 47 48 142 143 144 lemul1ad
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) <_ ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) )
146 133 139 38 141 145 lediv2ad
 |-  ( ph -> ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) <_ ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) )
147 73 108 82 129 146 lemul1ad
 |-  ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) <_ ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
148 83 109 37 124 147 lemul2ad
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) <_ ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
149 84 110 94 148 leadd1dd
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) )
150 50 18 51 46 div23d
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) = ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) )
151 150 eqcomd
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) = ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) )
152 151 oveq2d
 |-  ( ph -> ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) )
153 152 oveq1d
 |-  ( ph -> ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
154 153 oveq2d
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
155 18 sqcld
 |-  ( ph -> ( ( log ` 2 ) ^ 2 ) e. CC )
156 12 91 expcld
 |-  ( ph -> ( ( log ` A ) ^ 1 ) e. CC )
157 13 155 156 3 88 11 divmuldivd
 |-  ( ph -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) )
158 154 157 oveq12d
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) = ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
159 50 18 mulcld
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) e. CC )
160 50 18 105 26 mulne0d
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) =/= 0 )
161 53 159 51 160 46 divdiv2d
 |-  ( ph -> ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) = ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) )
162 161 oveq1d
 |-  ( ph -> ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
163 162 oveq2d
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
164 53 51 mulcld
 |-  ( ph -> ( 1 x. ( ( log ` 2 ) ^ 5 ) ) e. CC )
165 164 159 160 divcld
 |-  ( ph -> ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) e. CC )
166 82 recnd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) e. CC )
167 13 165 166 mulassd
 |-  ( ph -> ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( 2 x. ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
168 167 eqcomd
 |-  ( ph -> ( 2 x. ( ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
169 163 168 eqtrd
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
170 169 oveq1d
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
171 13 164 159 160 divassd
 |-  ( ph -> ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) = ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) )
172 171 eqcomd
 |-  ( ph -> ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) = ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) )
173 172 oveq1d
 |-  ( ph -> ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
174 173 oveq1d
 |-  ( ph -> ( ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
175 13 53 51 mulassd
 |-  ( ph -> ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) = ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) )
176 175 eqcomd
 |-  ( ph -> ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) = ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) )
177 176 oveq1d
 |-  ( ph -> ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) = ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) )
178 177 oveq1d
 |-  ( ph -> ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
179 178 oveq1d
 |-  ( ph -> ( ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
180 13 mulid1d
 |-  ( ph -> ( 2 x. 1 ) = 2 )
181 180 oveq1d
 |-  ( ph -> ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) = ( 2 x. ( ( log ` 2 ) ^ 5 ) ) )
182 181 oveq1d
 |-  ( ph -> ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) = ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) )
183 182 oveq1d
 |-  ( ph -> ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
184 183 oveq1d
 |-  ( ph -> ( ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
185 13 51 mulcld
 |-  ( ph -> ( 2 x. ( ( log ` 2 ) ^ 5 ) ) e. CC )
186 79 recnd
 |-  ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) e. CC )
187 51 3 mulcld
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) e. CC )
188 185 159 186 187 160 81 divmuldivd
 |-  ( ph -> ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
189 188 oveq1d
 |-  ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
190 50 18 187 mulassd
 |-  ( ph -> ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
191 190 oveq2d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
192 191 oveq1d
 |-  ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
193 185 186 mulcomd
 |-  ( ph -> ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) = ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) )
194 18 51 3 mulassd
 |-  ( ph -> ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) = ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) )
195 194 eqcomd
 |-  ( ph -> ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) )
196 195 oveq2d
 |-  ( ph -> ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) )
197 193 196 oveq12d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) )
198 197 oveq1d
 |-  ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
199 18 51 mulcld
 |-  ( ph -> ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) e. CC )
200 199 3 mulcld
 |-  ( ph -> ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) e. CC )
201 18 51 26 46 mulne0d
 |-  ( ph -> ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) =/= 0 )
202 199 3 201 11 mulne0d
 |-  ( ph -> ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) =/= 0 )
203 186 50 185 200 105 202 divmuldivd
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) )
204 203 eqcomd
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) )
205 204 oveq1d
 |-  ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
206 75 recnd
 |-  ( ph -> 5 e. CC )
207 78 recnd
 |-  ( ph -> ( ( log ` A ) ^ 4 ) e. CC )
208 206 207 50 105 divassd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) = ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) )
209 194 oveq2d
 |-  ( ph -> ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) = ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
210 208 209 oveq12d
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) = ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
211 210 oveq1d
 |-  ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
212 77 nn0zd
 |-  ( ph -> 4 e. ZZ )
213 12 104 45 212 expsubd
 |-  ( ph -> ( ( log ` A ) ^ ( 4 - 5 ) ) = ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) )
214 213 eqcomd
 |-  ( ph -> ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) = ( ( log ` A ) ^ ( 4 - 5 ) ) )
215 4p1e5
 |-  ( 4 + 1 ) = 5
216 74 recni
 |-  5 e. CC
217 5 recni
 |-  4 e. CC
218 ax-1cn
 |-  1 e. CC
219 216 217 218 subaddi
 |-  ( ( 5 - 4 ) = 1 <-> ( 4 + 1 ) = 5 )
220 215 219 mpbir
 |-  ( 5 - 4 ) = 1
221 220 a1i
 |-  ( ph -> ( 5 - 4 ) = 1 )
222 53 subid1d
 |-  ( ph -> ( 1 - 0 ) = 1 )
223 221 222 eqtr4d
 |-  ( ph -> ( 5 - 4 ) = ( 1 - 0 ) )
224 206 217 jctir
 |-  ( ph -> ( 5 e. CC /\ 4 e. CC ) )
225 0cnd
 |-  ( ph -> 0 e. CC )
226 53 225 jca
 |-  ( ph -> ( 1 e. CC /\ 0 e. CC ) )
227 subeqrev
 |-  ( ( ( 5 e. CC /\ 4 e. CC ) /\ ( 1 e. CC /\ 0 e. CC ) ) -> ( ( 5 - 4 ) = ( 1 - 0 ) <-> ( 4 - 5 ) = ( 0 - 1 ) ) )
228 224 226 227 syl2anc
 |-  ( ph -> ( ( 5 - 4 ) = ( 1 - 0 ) <-> ( 4 - 5 ) = ( 0 - 1 ) ) )
229 223 228 mpbid
 |-  ( ph -> ( 4 - 5 ) = ( 0 - 1 ) )
230 df-neg
 |-  -u 1 = ( 0 - 1 )
231 229 230 eqtr4di
 |-  ( ph -> ( 4 - 5 ) = -u 1 )
232 231 oveq2d
 |-  ( ph -> ( ( log ` A ) ^ ( 4 - 5 ) ) = ( ( log ` A ) ^ -u 1 ) )
233 214 232 eqtrd
 |-  ( ph -> ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) = ( ( log ` A ) ^ -u 1 ) )
234 233 oveq2d
 |-  ( ph -> ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) = ( 5 x. ( ( log ` A ) ^ -u 1 ) ) )
235 13 18 51 187 26 81 divmuldivd
 |-  ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
236 235 eqcomd
 |-  ( ph -> ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) )
237 234 236 oveq12d
 |-  ( ph -> ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) )
238 237 oveq1d
 |-  ( ph -> ( ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
239 1zzd
 |-  ( ph -> 1 e. ZZ )
240 12 104 239 expnegd
 |-  ( ph -> ( ( log ` A ) ^ -u 1 ) = ( 1 / ( ( log ` A ) ^ 1 ) ) )
241 240 oveq2d
 |-  ( ph -> ( 5 x. ( ( log ` A ) ^ -u 1 ) ) = ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) )
242 51 51 3 46 11 divdiv1d
 |-  ( ph -> ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) = ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) )
243 242 eqcomd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) )
244 243 oveq2d
 |-  ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) )
245 241 244 oveq12d
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) )
246 245 oveq1d
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
247 12 104 239 expne0d
 |-  ( ph -> ( ( log ` A ) ^ 1 ) =/= 0 )
248 206 53 156 247 divassd
 |-  ( ph -> ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) = ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) )
249 248 eqcomd
 |-  ( ph -> ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) = ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) )
250 51 46 dividd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) = 1 )
251 250 oveq1d
 |-  ( ph -> ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) = ( 1 / A ) )
252 251 oveq2d
 |-  ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) = ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) )
253 249 252 oveq12d
 |-  ( ph -> ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) = ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) )
254 253 oveq1d
 |-  ( ph -> ( ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
255 206 mulid1d
 |-  ( ph -> ( 5 x. 1 ) = 5 )
256 255 oveq1d
 |-  ( ph -> ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) = ( 5 / ( ( log ` A ) ^ 1 ) ) )
257 13 18 53 3 26 11 divmuldivd
 |-  ( ph -> ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) = ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) )
258 256 257 oveq12d
 |-  ( ph -> ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) = ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) )
259 258 oveq1d
 |-  ( ph -> ( ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
260 180 13 eqeltrd
 |-  ( ph -> ( 2 x. 1 ) e. CC )
261 18 3 mulcld
 |-  ( ph -> ( ( log ` 2 ) x. A ) e. CC )
262 18 3 26 11 mulne0d
 |-  ( ph -> ( ( log ` 2 ) x. A ) =/= 0 )
263 206 156 260 261 247 262 divmuldivd
 |-  ( ph -> ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) = ( ( 5 x. ( 2 x. 1 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) )
264 180 oveq2d
 |-  ( ph -> ( 5 x. ( 2 x. 1 ) ) = ( 5 x. 2 ) )
265 264 oveq1d
 |-  ( ph -> ( ( 5 x. ( 2 x. 1 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) = ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) )
266 263 265 eqtrd
 |-  ( ph -> ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) = ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) )
267 266 oveq1d
 |-  ( ph -> ( ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
268 5t2e10
 |-  ( 5 x. 2 ) = ; 1 0
269 268 a1i
 |-  ( ph -> ( 5 x. 2 ) = ; 1 0 )
270 269 oveq1d
 |-  ( ph -> ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) = ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) )
271 270 oveq1d
 |-  ( ph -> ( ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
272 10nn0
 |-  ; 1 0 e. NN0
273 272 nn0cni
 |-  ; 1 0 e. CC
274 273 a1i
 |-  ( ph -> ; 1 0 e. CC )
275 274 mulid1d
 |-  ( ph -> ( ; 1 0 x. 1 ) = ; 1 0 )
276 275 oveq1d
 |-  ( ph -> ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) )
277 13 156 mulcld
 |-  ( ph -> ( 2 x. ( ( log ` A ) ^ 1 ) ) e. CC )
278 277 155 88 divcld
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) e. CC )
279 278 mulid2d
 |-  ( ph -> ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) )
280 276 279 oveq12d
 |-  ( ph -> ( ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) )
281 18 91 expcld
 |-  ( ph -> ( ( log ` 2 ) ^ 1 ) e. CC )
282 18 26 239 expne0d
 |-  ( ph -> ( ( log ` 2 ) ^ 1 ) =/= 0 )
283 277 281 282 divcld
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) e. CC )
284 283 mulid1d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) )
285 284 oveq2d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) )
286 10re
 |-  ; 1 0 e. RR
287 286 a1i
 |-  ( ph -> ; 1 0 e. RR )
288 287 40 104 redivcld
 |-  ( ph -> ( ; 1 0 / ( log ` A ) ) e. RR )
289 40 43 26 redivcld
 |-  ( ph -> ( ( log ` A ) / ( log ` 2 ) ) e. RR )
290 289 91 reexpcld
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) e. RR )
291 37 290 remulcld
 |-  ( ph -> ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) e. RR )
292 288 291 readdcld
 |-  ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) e. RR )
293 287 291 readdcld
 |-  ( ph -> ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) e. RR )
294 43 112 reexpcld
 |-  ( ph -> ( ( log ` 2 ) ^ 3 ) e. RR )
295 3z
 |-  3 e. ZZ
296 295 a1i
 |-  ( ph -> 3 e. ZZ )
297 18 26 296 expne0d
 |-  ( ph -> ( ( log ` 2 ) ^ 3 ) =/= 0 )
298 113 294 297 redivcld
 |-  ( ph -> ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) e. RR )
299 6 298 remulcld
 |-  ( ph -> ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) e. RR )
300 ere
 |-  _e e. RR
301 300 a1i
 |-  ( ph -> _e e. RR )
302 112 nn0red
 |-  ( ph -> 3 e. RR )
303 egt2lt3
 |-  ( 2 < _e /\ _e < 3 )
304 303 simpri
 |-  _e < 3
305 304 a1i
 |-  ( ph -> _e < 3 )
306 3lt4
 |-  3 < 4
307 306 a1i
 |-  ( ph -> 3 < 4 )
308 302 6 1 307 2 ltletrd
 |-  ( ph -> 3 < A )
309 301 302 1 305 308 lttrd
 |-  ( ph -> _e < A )
310 301 1 309 ltled
 |-  ( ph -> _e <_ A )
311 301 1 lenltd
 |-  ( ph -> ( _e <_ A <-> -. A < _e ) )
312 310 311 mpbid
 |-  ( ph -> -. A < _e )
313 loglt1b
 |-  ( A e. RR+ -> ( ( log ` A ) < 1 <-> A < _e ) )
314 39 313 syl
 |-  ( ph -> ( ( log ` A ) < 1 <-> A < _e ) )
315 312 314 mtbird
 |-  ( ph -> -. ( log ` A ) < 1 )
316 38 40 lenltd
 |-  ( ph -> ( 1 <_ ( log ` A ) <-> -. ( log ` A ) < 1 ) )
317 315 316 mpbird
 |-  ( ph -> 1 <_ ( log ` A ) )
318 10nn
 |-  ; 1 0 e. NN
319 318 a1i
 |-  ( ph -> ; 1 0 e. NN )
320 nnledivrp
 |-  ( ( ; 1 0 e. NN /\ ( log ` A ) e. RR+ ) -> ( 1 <_ ( log ` A ) <-> ( ; 1 0 / ( log ` A ) ) <_ ; 1 0 ) )
321 319 130 320 syl2anc
 |-  ( ph -> ( 1 <_ ( log ` A ) <-> ( ; 1 0 / ( log ` A ) ) <_ ; 1 0 ) )
322 317 321 mpbid
 |-  ( ph -> ( ; 1 0 / ( log ` A ) ) <_ ; 1 0 )
323 288 287 291 322 leadd1dd
 |-  ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) <_ ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) )
324 38 55 gtned
 |-  ( ph -> 2 =/= 1 )
325 37 15 1 9 324 relogbcld
 |-  ( ph -> ( 2 logb A ) e. RR )
326 325 91 reexpcld
 |-  ( ph -> ( ( 2 logb A ) ^ 1 ) e. RR )
327 42 55 jca
 |-  ( ph -> ( 2 e. RR+ /\ 1 < 2 ) )
328 logbgt0b
 |-  ( ( A e. RR+ /\ ( 2 e. RR+ /\ 1 < 2 ) ) -> ( 0 < ( 2 logb A ) <-> 1 < A ) )
329 39 327 328 syl2anc
 |-  ( ph -> ( 0 < ( 2 logb A ) <-> 1 < A ) )
330 99 329 mpbird
 |-  ( ph -> 0 < ( 2 logb A ) )
331 325 330 elrpd
 |-  ( ph -> ( 2 logb A ) e. RR+ )
332 331 239 rpexpcld
 |-  ( ph -> ( ( 2 logb A ) ^ 1 ) e. RR+ )
333 332 rpne0d
 |-  ( ph -> ( ( 2 logb A ) ^ 1 ) =/= 0 )
334 287 326 333 redivcld
 |-  ( ph -> ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) e. RR )
335 334 37 readdcld
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) e. RR )
336 sq2
 |-  ( 2 ^ 2 ) = 4
337 336 a1i
 |-  ( ph -> ( 2 ^ 2 ) = 4 )
338 337 6 eqeltrd
 |-  ( ph -> ( 2 ^ 2 ) e. RR )
339 6 338 remulcld
 |-  ( ph -> ( 4 x. ( 2 ^ 2 ) ) e. RR )
340 325 resqcld
 |-  ( ph -> ( ( 2 logb A ) ^ 2 ) e. RR )
341 6 340 remulcld
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) e. RR )
342 325 recnd
 |-  ( ph -> ( 2 logb A ) e. CC )
343 342 exp1d
 |-  ( ph -> ( ( 2 logb A ) ^ 1 ) = ( 2 logb A ) )
344 343 oveq2d
 |-  ( ph -> ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) = ( ; 1 0 / ( 2 logb A ) ) )
345 344 oveq1d
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) = ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) )
346 345 335 eqeltrrd
 |-  ( ph -> ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) e. RR )
347 287 rehalfcld
 |-  ( ph -> ( ; 1 0 / 2 ) e. RR )
348 347 37 readdcld
 |-  ( ph -> ( ( ; 1 0 / 2 ) + 2 ) e. RR )
349 344 334 eqeltrrd
 |-  ( ph -> ( ; 1 0 / ( 2 logb A ) ) e. RR )
350 287 37 17 redivcld
 |-  ( ph -> ( ; 1 0 / 2 ) e. RR )
351 272 nn0ge0i
 |-  0 <_ ; 1 0
352 351 a1i
 |-  ( ph -> 0 <_ ; 1 0 )
353 42 324 87 relogbexpd
 |-  ( ph -> ( 2 logb ( 2 ^ 2 ) ) = 2 )
354 353 eqcomd
 |-  ( ph -> 2 = ( 2 logb ( 2 ^ 2 ) ) )
355 337 oveq2d
 |-  ( ph -> ( 2 logb ( 2 ^ 2 ) ) = ( 2 logb 4 ) )
356 354 355 eqtrd
 |-  ( ph -> 2 = ( 2 logb 4 ) )
357 37 leidd
 |-  ( ph -> 2 <_ 2 )
358 87 357 6 8 1 9 2 logblebd
 |-  ( ph -> ( 2 logb 4 ) <_ ( 2 logb A ) )
359 356 358 eqbrtrd
 |-  ( ph -> 2 <_ ( 2 logb A ) )
360 42 331 287 352 359 lediv2ad
 |-  ( ph -> ( ; 1 0 / ( 2 logb A ) ) <_ ( ; 1 0 / 2 ) )
361 349 350 37 360 leadd1dd
 |-  ( ph -> ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) <_ ( ( ; 1 0 / 2 ) + 2 ) )
362 1nn
 |-  1 e. NN
363 6nn0
 |-  6 e. NN0
364 2nn0
 |-  2 e. NN0
365 27 364 nn0addcli
 |-  ( 5 + 2 ) e. NN0
366 5p2e7
 |-  ( 5 + 2 ) = 7
367 7re
 |-  7 e. RR
368 367 364 nn0addge1i
 |-  7 <_ ( 7 + 2 )
369 7p2e9
 |-  ( 7 + 2 ) = 9
370 368 369 breqtri
 |-  7 <_ 9
371 366 370 eqbrtri
 |-  ( 5 + 2 ) <_ 9
372 362 363 365 371 declei
 |-  ( 5 + 2 ) <_ ; 1 6
373 372 a1i
 |-  ( ph -> ( 5 + 2 ) <_ ; 1 6 )
374 206 13 274 17 ldiv
 |-  ( ph -> ( ( 5 x. 2 ) = ; 1 0 <-> 5 = ( ; 1 0 / 2 ) ) )
375 269 374 mpbid
 |-  ( ph -> 5 = ( ; 1 0 / 2 ) )
376 375 oveq1d
 |-  ( ph -> ( 5 + 2 ) = ( ( ; 1 0 / 2 ) + 2 ) )
377 4t4e16
 |-  ( 4 x. 4 ) = ; 1 6
378 377 eqcomi
 |-  ; 1 6 = ( 4 x. 4 )
379 378 a1i
 |-  ( ph -> ; 1 6 = ( 4 x. 4 ) )
380 337 eqcomd
 |-  ( ph -> 4 = ( 2 ^ 2 ) )
381 380 oveq2d
 |-  ( ph -> ( 4 x. 4 ) = ( 4 x. ( 2 ^ 2 ) ) )
382 379 381 eqtrd
 |-  ( ph -> ; 1 6 = ( 4 x. ( 2 ^ 2 ) ) )
383 373 376 382 3brtr3d
 |-  ( ph -> ( ( ; 1 0 / 2 ) + 2 ) <_ ( 4 x. ( 2 ^ 2 ) ) )
384 346 348 339 361 383 letrd
 |-  ( ph -> ( ( ; 1 0 / ( 2 logb A ) ) + 2 ) <_ ( 4 x. ( 2 ^ 2 ) ) )
385 345 384 eqbrtrd
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) <_ ( 4 x. ( 2 ^ 2 ) ) )
386 4 6 8 ltled
 |-  ( ph -> 0 <_ 4 )
387 364 a1i
 |-  ( ph -> 2 e. NN0 )
388 37 325 387 124 359 leexp1ad
 |-  ( ph -> ( 2 ^ 2 ) <_ ( ( 2 logb A ) ^ 2 ) )
389 338 340 6 386 388 lemul2ad
 |-  ( ph -> ( 4 x. ( 2 ^ 2 ) ) <_ ( 4 x. ( ( 2 logb A ) ^ 2 ) ) )
390 335 339 341 385 389 letrd
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) <_ ( 4 x. ( ( 2 logb A ) ^ 2 ) ) )
391 37 326 remulcld
 |-  ( ph -> ( 2 x. ( ( 2 logb A ) ^ 1 ) ) e. RR )
392 391 recnd
 |-  ( ph -> ( 2 x. ( ( 2 logb A ) ^ 1 ) ) e. CC )
393 326 recnd
 |-  ( ph -> ( ( 2 logb A ) ^ 1 ) e. CC )
394 274 392 393 333 divdird
 |-  ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) )
395 13 393 393 333 divassd
 |-  ( ph -> ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) )
396 395 oveq2d
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) )
397 393 333 dividd
 |-  ( ph -> ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) = 1 )
398 397 oveq2d
 |-  ( ph -> ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( 2 x. 1 ) )
399 398 180 eqtrd
 |-  ( ph -> ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) = 2 )
400 399 oveq2d
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( 2 x. ( ( ( 2 logb A ) ^ 1 ) / ( ( 2 logb A ) ^ 1 ) ) ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) )
401 396 400 eqtrd
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + ( ( 2 x. ( ( 2 logb A ) ^ 1 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) )
402 394 401 eqtrd
 |-  ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) )
403 402 eqcomd
 |-  ( ph -> ( ( ; 1 0 / ( ( 2 logb A ) ^ 1 ) ) + 2 ) = ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) )
404 2p1e3
 |-  ( 2 + 1 ) = 3
405 404 a1i
 |-  ( ph -> ( 2 + 1 ) = 3 )
406 302 recnd
 |-  ( ph -> 3 e. CC )
407 406 53 13 subadd2d
 |-  ( ph -> ( ( 3 - 1 ) = 2 <-> ( 2 + 1 ) = 3 ) )
408 405 407 mpbird
 |-  ( ph -> ( 3 - 1 ) = 2 )
409 408 eqcomd
 |-  ( ph -> 2 = ( 3 - 1 ) )
410 409 oveq2d
 |-  ( ph -> ( ( 2 logb A ) ^ 2 ) = ( ( 2 logb A ) ^ ( 3 - 1 ) ) )
411 410 oveq2d
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) = ( 4 x. ( ( 2 logb A ) ^ ( 3 - 1 ) ) ) )
412 4 330 gtned
 |-  ( ph -> ( 2 logb A ) =/= 0 )
413 342 412 239 296 expsubd
 |-  ( ph -> ( ( 2 logb A ) ^ ( 3 - 1 ) ) = ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) )
414 413 oveq2d
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ ( 3 - 1 ) ) ) = ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) )
415 411 414 eqtrd
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) = ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) )
416 217 a1i
 |-  ( ph -> 4 e. CC )
417 325 112 reexpcld
 |-  ( ph -> ( ( 2 logb A ) ^ 3 ) e. RR )
418 417 recnd
 |-  ( ph -> ( ( 2 logb A ) ^ 3 ) e. CC )
419 416 418 393 333 divassd
 |-  ( ph -> ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) = ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) )
420 419 eqcomd
 |-  ( ph -> ( 4 x. ( ( ( 2 logb A ) ^ 3 ) / ( ( 2 logb A ) ^ 1 ) ) ) = ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) )
421 415 420 eqtrd
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ 2 ) ) = ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) )
422 390 403 421 3brtr3d
 |-  ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) <_ ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) )
423 287 391 readdcld
 |-  ( ph -> ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) e. RR )
424 6 417 remulcld
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ 3 ) ) e. RR )
425 423 424 332 lediv1d
 |-  ( ph -> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) <_ ( 4 x. ( ( 2 logb A ) ^ 3 ) ) <-> ( ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) / ( ( 2 logb A ) ^ 1 ) ) <_ ( ( 4 x. ( ( 2 logb A ) ^ 3 ) ) / ( ( 2 logb A ) ^ 1 ) ) ) )
426 422 425 mpbird
 |-  ( ph -> ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) <_ ( 4 x. ( ( 2 logb A ) ^ 3 ) ) )
427 87 uzidd
 |-  ( ph -> 2 e. ( ZZ>= ` 2 ) )
428 427 39 jca
 |-  ( ph -> ( 2 e. ( ZZ>= ` 2 ) /\ A e. RR+ ) )
429 relogbval
 |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ A e. RR+ ) -> ( 2 logb A ) = ( ( log ` A ) / ( log ` 2 ) ) )
430 428 429 syl
 |-  ( ph -> ( 2 logb A ) = ( ( log ` A ) / ( log ` 2 ) ) )
431 430 oveq1d
 |-  ( ph -> ( ( 2 logb A ) ^ 1 ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) )
432 431 oveq2d
 |-  ( ph -> ( 2 x. ( ( 2 logb A ) ^ 1 ) ) = ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) )
433 432 oveq2d
 |-  ( ph -> ( ; 1 0 + ( 2 x. ( ( 2 logb A ) ^ 1 ) ) ) = ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) )
434 430 oveq1d
 |-  ( ph -> ( ( 2 logb A ) ^ 3 ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 3 ) )
435 12 18 26 112 expdivd
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 3 ) = ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) )
436 434 435 eqtrd
 |-  ( ph -> ( ( 2 logb A ) ^ 3 ) = ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) )
437 436 oveq2d
 |-  ( ph -> ( 4 x. ( ( 2 logb A ) ^ 3 ) ) = ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) )
438 426 433 437 3brtr3d
 |-  ( ph -> ( ; 1 0 + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) <_ ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) )
439 292 293 299 323 438 letrd
 |-  ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) <_ ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) )
440 12 exp1d
 |-  ( ph -> ( ( log ` A ) ^ 1 ) = ( log ` A ) )
441 440 eqcomd
 |-  ( ph -> ( log ` A ) = ( ( log ` A ) ^ 1 ) )
442 441 oveq2d
 |-  ( ph -> ( ; 1 0 / ( log ` A ) ) = ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) )
443 13 156 281 282 divassd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) = ( 2 x. ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) )
444 12 18 26 91 expdivd
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) = ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) )
445 444 eqcomd
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) )
446 445 oveq2d
 |-  ( ph -> ( 2 x. ( ( ( log ` A ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) = ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) )
447 443 446 eqtrd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) = ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) )
448 447 eqcomd
 |-  ( ph -> ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) )
449 442 448 oveq12d
 |-  ( ph -> ( ( ; 1 0 / ( log ` A ) ) + ( 2 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 1 ) ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) )
450 113 recnd
 |-  ( ph -> ( ( log ` A ) ^ 3 ) e. CC )
451 18 112 expcld
 |-  ( ph -> ( ( log ` 2 ) ^ 3 ) e. CC )
452 416 450 451 297 divassd
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) = ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) )
453 452 eqcomd
 |-  ( ph -> ( 4 x. ( ( ( log ` A ) ^ 3 ) / ( ( log ` 2 ) ^ 3 ) ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) )
454 439 449 453 3brtr3d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) )
455 285 454 eqbrtrd
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) )
456 281 282 dividd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) = 1 )
457 456 eqcomd
 |-  ( ph -> 1 = ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) )
458 457 oveq2d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) )
459 277 281 281 281 282 282 divmuldivd
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. ( ( ( log ` 2 ) ^ 1 ) / ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) )
460 458 459 eqtrd
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) )
461 460 oveq2d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 1 ) ) x. 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) )
462 416 450 mulcld
 |-  ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) e. CC )
463 462 451 297 divcld
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) e. CC )
464 463 mulid1d
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) )
465 464 eqcomd
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) )
466 455 461 465 3brtr3d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) )
467 274 156 247 divcld
 |-  ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) e. CC )
468 467 mulid1d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. 1 ) = ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) )
469 468 eqcomd
 |-  ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. 1 ) )
470 18 26 dividd
 |-  ( ph -> ( ( log ` 2 ) / ( log ` 2 ) ) = 1 )
471 470 eqcomd
 |-  ( ph -> 1 = ( ( log ` 2 ) / ( log ` 2 ) ) )
472 471 oveq2d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. 1 ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) / ( log ` 2 ) ) ) )
473 469 472 eqtrd
 |-  ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) = ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) / ( log ` 2 ) ) ) )
474 274 156 18 18 247 26 divmuldivd
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) / ( log ` 2 ) ) ) = ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) )
475 473 474 eqtrd
 |-  ( ph -> ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) = ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) )
476 18 exp1d
 |-  ( ph -> ( ( log ` 2 ) ^ 1 ) = ( log ` 2 ) )
477 476 oveq2d
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) )
478 df-2
 |-  2 = ( 1 + 1 )
479 478 a1i
 |-  ( ph -> 2 = ( 1 + 1 ) )
480 479 oveq2d
 |-  ( ph -> ( ( log ` 2 ) ^ 2 ) = ( ( log ` 2 ) ^ ( 1 + 1 ) ) )
481 18 91 91 expaddd
 |-  ( ph -> ( ( log ` 2 ) ^ ( 1 + 1 ) ) = ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) )
482 480 481 eqtrd
 |-  ( ph -> ( ( log ` 2 ) ^ 2 ) = ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) )
483 482 eqcomd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( log ` 2 ) ^ 2 ) )
484 477 483 oveq12d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) )
485 475 484 oveq12d
 |-  ( ph -> ( ( ; 1 0 / ( ( log ` A ) ^ 1 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( log ` 2 ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 1 ) x. ( ( log ` 2 ) ^ 1 ) ) ) ) = ( ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) )
486 476 eqcomd
 |-  ( ph -> ( log ` 2 ) = ( ( log ` 2 ) ^ 1 ) )
487 486 oveq2d
 |-  ( ph -> ( ( log ` 2 ) / ( log ` 2 ) ) = ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) )
488 471 487 eqtrd
 |-  ( ph -> 1 = ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) )
489 488 oveq2d
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) ) )
490 476 18 eqeltrd
 |-  ( ph -> ( ( log ` 2 ) ^ 1 ) e. CC )
491 476 26 eqnetrd
 |-  ( ph -> ( ( log ` 2 ) ^ 1 ) =/= 0 )
492 462 451 18 490 297 491 divmuldivd
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. ( ( log ` 2 ) / ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) )
493 489 492 eqtrd
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 3 ) ) x. 1 ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) )
494 466 485 493 3brtr3d
 |-  ( ph -> ( ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) )
495 156 18 mulcld
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) e. CC )
496 156 18 247 26 mulne0d
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) =/= 0 )
497 274 18 495 496 div23d
 |-  ( ph -> ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) )
498 277 18 155 88 div23d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) )
499 497 498 oveq12d
 |-  ( ph -> ( ( ( ; 1 0 x. ( log ` 2 ) ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) )
500 62 a1i
 |-  ( ph -> 4 = ( 3 + 1 ) )
501 500 oveq2d
 |-  ( ph -> ( ( log ` 2 ) ^ 4 ) = ( ( log ` 2 ) ^ ( 3 + 1 ) ) )
502 18 91 112 expaddd
 |-  ( ph -> ( ( log ` 2 ) ^ ( 3 + 1 ) ) = ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) )
503 501 502 eqtrd
 |-  ( ph -> ( ( log ` 2 ) ^ 4 ) = ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) )
504 503 eqcomd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( log ` 2 ) ^ 4 ) )
505 504 oveq2d
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( ( log ` 2 ) ^ 3 ) x. ( ( log ` 2 ) ^ 1 ) ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 4 ) ) )
506 494 499 505 3brtr3d
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 4 ) ) )
507 92 43 remulcld
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) e. RR )
508 287 507 496 redivcld
 |-  ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) e. RR )
509 508 recnd
 |-  ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) e. CC )
510 509 278 18 adddird
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) )
511 510 eqcomd
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) x. ( log ` 2 ) ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) x. ( log ` 2 ) ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) )
512 18 26 212 expne0d
 |-  ( ph -> ( ( log ` 2 ) ^ 4 ) =/= 0 )
513 462 18 117 512 div23d
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( log ` 2 ) ) )
514 506 511 513 3brtr3d
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( log ` 2 ) ) )
515 37 92 remulcld
 |-  ( ph -> ( 2 x. ( ( log ` A ) ^ 1 ) ) e. RR )
516 515 85 88 redivcld
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) e. RR )
517 508 516 readdcld
 |-  ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) e. RR )
518 114 115 120 redivcld
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) e. RR )
519 517 518 135 lemul1d
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) <-> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) x. ( log ` 2 ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( log ` 2 ) ) ) )
520 514 519 mpbird
 |-  ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) )
521 280 520 eqbrtrd
 |-  ( ph -> ( ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) )
522 274 53 495 496 divassd
 |-  ( ph -> ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) )
523 53 277 155 88 div12d
 |-  ( ph -> ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) )
524 522 523 oveq12d
 |-  ( ph -> ( ( ( ; 1 0 x. 1 ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) + ( 1 x. ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) )
525 462 mulid1d
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) = ( 4 x. ( ( log ` A ) ^ 3 ) ) )
526 525 eqcomd
 |-  ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) )
527 526 oveq1d
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) / ( ( log ` 2 ) ^ 4 ) ) )
528 521 524 527 3brtr3d
 |-  ( ph -> ( ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) / ( ( log ` 2 ) ^ 4 ) ) )
529 3 11 dividd
 |-  ( ph -> ( A / A ) = 1 )
530 529 eqcomd
 |-  ( ph -> 1 = ( A / A ) )
531 530 oveq1d
 |-  ( ph -> ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( A / A ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) )
532 3 3 495 11 496 divdiv1d
 |-  ( ph -> ( ( A / A ) / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) )
533 531 532 eqtrd
 |-  ( ph -> ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) )
534 533 oveq2d
 |-  ( ph -> ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) = ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) )
535 eqidd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) )
536 530 oveq1d
 |-  ( ph -> ( 1 / ( ( log ` 2 ) ^ 2 ) ) = ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) )
537 536 oveq2d
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) )
538 535 537 eqtrd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) )
539 534 538 oveq12d
 |-  ( ph -> ( ( ; 1 0 x. ( 1 / ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( 1 / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) )
540 462 53 117 512 divassd
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. 1 ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) )
541 528 539 540 3brtr3d
 |-  ( ph -> ( ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) )
542 3 495 mulcomd
 |-  ( ph -> ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) x. A ) )
543 156 18 3 mulassd
 |-  ( ph -> ( ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) x. A ) = ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) )
544 542 543 eqtrd
 |-  ( ph -> ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) = ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) )
545 544 oveq2d
 |-  ( ph -> ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) = ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) )
546 545 oveq2d
 |-  ( ph -> ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) = ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) )
547 3 3 155 11 88 divdiv1d
 |-  ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) = ( A / ( A x. ( ( log ` 2 ) ^ 2 ) ) ) )
548 3 155 mulcomd
 |-  ( ph -> ( A x. ( ( log ` 2 ) ^ 2 ) ) = ( ( ( log ` 2 ) ^ 2 ) x. A ) )
549 548 oveq2d
 |-  ( ph -> ( A / ( A x. ( ( log ` 2 ) ^ 2 ) ) ) = ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) )
550 547 549 eqtrd
 |-  ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) = ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) )
551 550 oveq2d
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
552 546 551 oveq12d
 |-  ( ph -> ( ( ; 1 0 x. ( A / ( A x. ( ( ( log ` A ) ^ 1 ) x. ( log ` 2 ) ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 2 ) ) ) ) = ( ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) )
553 eqidd
 |-  ( ph -> ( 1 / ( ( log ` 2 ) ^ 4 ) ) = ( 1 / ( ( log ` 2 ) ^ 4 ) ) )
554 530 oveq1d
 |-  ( ph -> ( 1 / ( ( log ` 2 ) ^ 4 ) ) = ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) )
555 553 554 eqtrd
 |-  ( ph -> ( 1 / ( ( log ` 2 ) ^ 4 ) ) = ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) )
556 555 oveq2d
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( 1 / ( ( log ` 2 ) ^ 4 ) ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) )
557 541 552 556 3brtr3d
 |-  ( ph -> ( ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) )
558 156 261 mulcld
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) e. CC )
559 156 261 247 262 mulne0d
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) =/= 0 )
560 274 558 3 559 div32d
 |-  ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) = ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) )
561 560 eqcomd
 |-  ( ph -> ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) = ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) )
562 155 3 mulcld
 |-  ( ph -> ( ( ( log ` 2 ) ^ 2 ) x. A ) e. CC )
563 155 3 88 11 mulne0d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 2 ) x. A ) =/= 0 )
564 277 562 3 563 div32d
 |-  ( ph -> ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) = ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) )
565 564 eqcomd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) = ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) )
566 561 565 oveq12d
 |-  ( ph -> ( ( ; 1 0 x. ( A / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) x. ( A / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) )
567 3 3 117 11 512 divdiv1d
 |-  ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) = ( A / ( A x. ( ( log ` 2 ) ^ 4 ) ) ) )
568 3 117 mulcomd
 |-  ( ph -> ( A x. ( ( log ` 2 ) ^ 4 ) ) = ( ( ( log ` 2 ) ^ 4 ) x. A ) )
569 568 oveq2d
 |-  ( ph -> ( A / ( A x. ( ( log ` 2 ) ^ 4 ) ) ) = ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
570 567 569 eqtrd
 |-  ( ph -> ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) = ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
571 570 oveq2d
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( ( A / A ) / ( ( log ` 2 ) ^ 4 ) ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) )
572 557 566 571 3brtr3d
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) )
573 43 1 remulcld
 |-  ( ph -> ( ( log ` 2 ) x. A ) e. RR )
574 92 573 remulcld
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) e. RR )
575 287 574 559 redivcld
 |-  ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) e. RR )
576 575 recnd
 |-  ( ph -> ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) e. CC )
577 157 94 eqeltrrd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) e. RR )
578 577 recnd
 |-  ( ph -> ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) e. CC )
579 576 578 3 adddird
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) )
580 579 eqcomd
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) x. A ) + ( ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) x. A ) ) = ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) )
581 12 112 expcld
 |-  ( ph -> ( ( log ` A ) ^ 3 ) e. CC )
582 416 581 mulcld
 |-  ( ph -> ( 4 x. ( ( log ` A ) ^ 3 ) ) e. CC )
583 117 3 mulcld
 |-  ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) e. CC )
584 117 3 512 11 mulne0d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. A ) =/= 0 )
585 582 583 3 584 div32d
 |-  ( ph -> ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) )
586 585 eqcomd
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) x. ( A / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) ) = ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) )
587 572 580 586 3brtr3d
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) )
588 575 577 readdcld
 |-  ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) e. RR )
589 588 122 39 lemul1d
 |-  ( ph -> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) <-> ( ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) x. A ) <_ ( ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) x. A ) ) )
590 587 589 mpbird
 |-  ( ph -> ( ( ; 1 0 / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
591 271 590 eqbrtrd
 |-  ( ph -> ( ( ( 5 x. 2 ) / ( ( ( log ` A ) ^ 1 ) x. ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
592 267 591 eqbrtrd
 |-  ( ph -> ( ( ( 5 / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 x. 1 ) / ( ( log ` 2 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
593 259 592 eqbrtrd
 |-  ( ph -> ( ( ( ( 5 x. 1 ) / ( ( log ` A ) ^ 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( 1 / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
594 254 593 eqbrtrd
 |-  ( ph -> ( ( ( 5 x. ( 1 / ( ( log ` A ) ^ 1 ) ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( ( log ` 2 ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) / A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
595 246 594 eqbrtrd
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ -u 1 ) ) x. ( ( 2 / ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
596 238 595 eqbrtrd
 |-  ( ph -> ( ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` A ) ^ 5 ) ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
597 211 596 eqbrtrd
 |-  ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` A ) ^ 5 ) ) x. ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
598 205 597 eqbrtrd
 |-  ( ph -> ( ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. ( 2 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( ( log ` 2 ) x. ( ( log ` 2 ) ^ 5 ) ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
599 198 598 eqbrtrd
 |-  ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( ( log ` 2 ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
600 192 599 eqbrtrd
 |-  ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) x. ( 5 x. ( ( log ` A ) ^ 4 ) ) ) / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) x. ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
601 189 600 eqbrtrd
 |-  ( ph -> ( ( ( ( 2 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
602 184 601 eqbrtrd
 |-  ( ph -> ( ( ( ( ( 2 x. 1 ) x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
603 179 602 eqbrtrd
 |-  ( ph -> ( ( ( ( 2 x. ( 1 x. ( ( log ` 2 ) ^ 5 ) ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
604 174 603 eqbrtrd
 |-  ( ph -> ( ( ( 2 x. ( ( 1 x. ( ( log ` 2 ) ^ 5 ) ) / ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
605 170 604 eqbrtrd
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) x. ( log ` 2 ) ) / ( ( log ` 2 ) ^ 5 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 x. ( ( log ` A ) ^ 1 ) ) / ( ( ( log ` 2 ) ^ 2 ) x. A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
606 158 605 eqbrtrd
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
607 95 111 122 149 606 letrd
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) ^ 5 ) / ( ( log ` 2 ) ^ 5 ) ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
608 35 607 eqbrtrd
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) <_ ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
609 427 39 429 syl2anc
 |-  ( ph -> ( 2 logb A ) = ( ( log ` A ) / ( log ` 2 ) ) )
610 609 eqcomd
 |-  ( ph -> ( ( log ` A ) / ( log ` 2 ) ) = ( 2 logb A ) )
611 610 oveq1d
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) = ( ( 2 logb A ) ^ 5 ) )
612 611 oveq1d
 |-  ( ph -> ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) = ( ( ( 2 logb A ) ^ 5 ) + 1 ) )
613 612 oveq1d
 |-  ( ph -> ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) = ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) )
614 613 oveq2d
 |-  ( ph -> ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) = ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) )
615 5cn
 |-  5 e. CC
616 615 a1i
 |-  ( ph -> 5 e. CC )
617 616 207 mulcld
 |-  ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) e. CC )
618 617 mulid1d
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) = ( 5 x. ( ( log ` A ) ^ 4 ) ) )
619 618 eqcomd
 |-  ( ph -> ( 5 x. ( ( log ` A ) ^ 4 ) ) = ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) )
620 eqidd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( log ` 2 ) ^ 5 ) x. A ) )
621 df-5
 |-  5 = ( 4 + 1 )
622 621 a1i
 |-  ( ph -> 5 = ( 4 + 1 ) )
623 622 oveq2d
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) = ( ( log ` 2 ) ^ ( 4 + 1 ) ) )
624 18 91 77 expaddd
 |-  ( ph -> ( ( log ` 2 ) ^ ( 4 + 1 ) ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) ^ 1 ) ) )
625 623 624 eqtrd
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) ^ 1 ) ) )
626 476 oveq2d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) ^ 1 ) ) = ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) )
627 625 626 eqtrd
 |-  ( ph -> ( ( log ` 2 ) ^ 5 ) = ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) )
628 627 oveq1d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) x. A ) )
629 620 628 eqtrd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) x. A ) )
630 117 18 3 mulassd
 |-  ( ph -> ( ( ( ( log ` 2 ) ^ 4 ) x. ( log ` 2 ) ) x. A ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) x. A ) ) )
631 629 630 eqtrd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) x. A ) ) )
632 18 3 mulcomd
 |-  ( ph -> ( ( log ` 2 ) x. A ) = ( A x. ( log ` 2 ) ) )
633 632 oveq2d
 |-  ( ph -> ( ( ( log ` 2 ) ^ 4 ) x. ( ( log ` 2 ) x. A ) ) = ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) )
634 631 633 eqtrd
 |-  ( ph -> ( ( ( log ` 2 ) ^ 5 ) x. A ) = ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) )
635 619 634 oveq12d
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) / ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) )
636 3 18 mulcld
 |-  ( ph -> ( A x. ( log ` 2 ) ) e. CC )
637 3 18 11 26 mulne0d
 |-  ( ph -> ( A x. ( log ` 2 ) ) =/= 0 )
638 186 117 53 636 120 637 divmuldivd
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) / ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) )
639 638 eqcomd
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) x. 1 ) / ( ( ( log ` 2 ) ^ 4 ) x. ( A x. ( log ` 2 ) ) ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
640 635 639 eqtrd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
641 206 207 117 120 divassd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) = ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) )
642 641 oveq1d
 |-  ( ph -> ( ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( log ` 2 ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
643 640 642 eqtrd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
644 12 18 26 77 expdivd
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) = ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) )
645 644 eqcomd
 |-  ( ph -> ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) = ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) )
646 645 oveq2d
 |-  ( ph -> ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) = ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) )
647 646 oveq1d
 |-  ( ph -> ( ( 5 x. ( ( ( log ` A ) ^ 4 ) / ( ( log ` 2 ) ^ 4 ) ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
648 643 647 eqtrd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
649 610 oveq1d
 |-  ( ph -> ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) = ( ( 2 logb A ) ^ 4 ) )
650 649 oveq2d
 |-  ( ph -> ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) = ( 5 x. ( ( 2 logb A ) ^ 4 ) ) )
651 650 oveq1d
 |-  ( ph -> ( ( 5 x. ( ( ( log ` A ) / ( log ` 2 ) ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
652 648 651 eqtrd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
653 342 77 expcld
 |-  ( ph -> ( ( 2 logb A ) ^ 4 ) e. CC )
654 616 653 mulcld
 |-  ( ph -> ( 5 x. ( ( 2 logb A ) ^ 4 ) ) e. CC )
655 39 rpne0d
 |-  ( ph -> A =/= 0 )
656 3 18 655 26 mulne0d
 |-  ( ph -> ( A x. ( log ` 2 ) ) =/= 0 )
657 636 656 reccld
 |-  ( ph -> ( 1 / ( A x. ( log ` 2 ) ) ) e. CC )
658 654 657 mulcld
 |-  ( ph -> ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) e. CC )
659 658 addid1d
 |-  ( ph -> ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) = ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) )
660 659 eqcomd
 |-  ( ph -> ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) = ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) )
661 652 660 eqtrd
 |-  ( ph -> ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) = ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) )
662 614 661 oveq12d
 |-  ( ph -> ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) = ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) )
663 662 oveq2d
 |-  ( ph -> ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) = ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) )
664 1e2m1
 |-  1 = ( 2 - 1 )
665 664 a1i
 |-  ( ph -> 1 = ( 2 - 1 ) )
666 665 oveq2d
 |-  ( ph -> ( ( log ` A ) ^ 1 ) = ( ( log ` A ) ^ ( 2 - 1 ) ) )
667 666 oveq1d
 |-  ( ph -> ( ( ( log ` A ) ^ 1 ) / A ) = ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) )
668 667 oveq2d
 |-  ( ph -> ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) = ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) )
669 663 668 oveq12d
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( ( log ` A ) / ( log ` 2 ) ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( 5 x. ( ( log ` A ) ^ 4 ) ) / ( ( ( log ` 2 ) ^ 5 ) x. A ) ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ 1 ) / A ) ) ) = ( ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) ) )
670 4cn
 |-  4 e. CC
671 670 a1i
 |-  ( ph -> 4 e. CC )
672 671 117 581 3 120 655 divmuldivd
 |-  ( ph -> ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) = ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) )
673 672 eqcomd
 |-  ( ph -> ( ( 4 x. ( ( log ` A ) ^ 3 ) ) / ( ( ( log ` 2 ) ^ 4 ) x. A ) ) = ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) )
674 608 669 673 3brtr3d
 |-  ( ph -> ( ( 2 x. ( ( 1 / ( ( ( ( 2 logb A ) ^ 5 ) + 1 ) x. ( log ` 2 ) ) ) x. ( ( ( 5 x. ( ( 2 logb A ) ^ 4 ) ) x. ( 1 / ( A x. ( log ` 2 ) ) ) ) + 0 ) ) ) + ( ( 2 / ( ( log ` 2 ) ^ 2 ) ) x. ( ( ( log ` A ) ^ ( 2 - 1 ) ) / A ) ) ) <_ ( ( 4 / ( ( log ` 2 ) ^ 4 ) ) x. ( ( ( log ` A ) ^ 3 ) / A ) ) )