Step |
Hyp |
Ref |
Expression |
1 |
|
dvle2.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dvle2.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dvle2.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
4 |
|
dvle2.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
5 |
|
dvle2.5 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐹 ) ) |
6 |
|
dvle2.6 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐺 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐻 ) ) |
7 |
|
dvle2.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ≤ 𝐻 ) |
8 |
|
dvle2.8 |
⊢ ( 𝑥 = 𝐴 → 𝐸 = 𝑃 ) |
9 |
|
dvle2.9 |
⊢ ( 𝑥 = 𝐴 → 𝐺 = 𝑄 ) |
10 |
|
dvle2.10 |
⊢ ( 𝑥 = 𝐵 → 𝐸 = 𝑅 ) |
11 |
|
dvle2.11 |
⊢ ( 𝑥 = 𝐵 → 𝐺 = 𝑆 ) |
12 |
|
dvle2.12 |
⊢ ( 𝜑 → 𝑃 ≤ 𝑄 ) |
13 |
|
dvle2.13 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
14 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( 𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ ) ) |
15 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) |
18 |
17
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐸 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
19 |
16 18
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐸 ∈ ℝ ) |
20 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
21 |
2
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
22 |
20 13 21
|
3jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) |
23 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
24 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
25 |
23 20 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵 ) ) ) |
26 |
22 25
|
mpbird |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
27 |
14 19 26
|
rspcdva |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
28 |
8
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ ) ) |
29 |
1
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
30 |
23 29 13
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
31 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
32 |
23 20 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
33 |
30 32
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
34 |
28 19 33
|
rspcdva |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
35 |
27 34
|
resubcld |
⊢ ( 𝜑 → ( 𝑅 − 𝑃 ) ∈ ℝ ) |
36 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( 𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ ) ) |
37 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
38 |
4 37
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
39 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) |
40 |
39
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
41 |
38 40
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ℝ ) |
42 |
36 41 26
|
rspcdva |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
43 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ ) ) |
44 |
43 41 33
|
rspcdva |
⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
45 |
42 44
|
resubcld |
⊢ ( 𝜑 → ( 𝑆 − 𝑄 ) ∈ ℝ ) |
46 |
1 2 3 5 4 6 7 33 26 13 8 9 10 11
|
dvle |
⊢ ( 𝜑 → ( 𝑅 − 𝑃 ) ≤ ( 𝑆 − 𝑄 ) ) |
47 |
35 34 45 44 46 12
|
le2addd |
⊢ ( 𝜑 → ( ( 𝑅 − 𝑃 ) + 𝑃 ) ≤ ( ( 𝑆 − 𝑄 ) + 𝑄 ) ) |
48 |
27
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
49 |
34
|
recnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
50 |
48 49
|
npcand |
⊢ ( 𝜑 → ( ( 𝑅 − 𝑃 ) + 𝑃 ) = 𝑅 ) |
51 |
42
|
recnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
52 |
44
|
recnd |
⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
53 |
51 52
|
npcand |
⊢ ( 𝜑 → ( ( 𝑆 − 𝑄 ) + 𝑄 ) = 𝑆 ) |
54 |
50 53
|
breq12d |
⊢ ( 𝜑 → ( ( ( 𝑅 − 𝑃 ) + 𝑃 ) ≤ ( ( 𝑆 − 𝑄 ) + 𝑄 ) ↔ 𝑅 ≤ 𝑆 ) ) |
55 |
47 54
|
mpbid |
⊢ ( 𝜑 → 𝑅 ≤ 𝑆 ) |