Metamath Proof Explorer


Theorem dvle2

Description: Collapsed dvle . (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses dvle2.1 ( 𝜑𝐴 ∈ ℝ )
dvle2.2 ( 𝜑𝐵 ∈ ℝ )
dvle2.3 ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
dvle2.4 ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
dvle2.5 ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐹 ) )
dvle2.6 ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐺 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐻 ) )
dvle2.7 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹𝐻 )
dvle2.8 ( 𝑥 = 𝐴𝐸 = 𝑃 )
dvle2.9 ( 𝑥 = 𝐴𝐺 = 𝑄 )
dvle2.10 ( 𝑥 = 𝐵𝐸 = 𝑅 )
dvle2.11 ( 𝑥 = 𝐵𝐺 = 𝑆 )
dvle2.12 ( 𝜑𝑃𝑄 )
dvle2.13 ( 𝜑𝐴𝐵 )
Assertion dvle2 ( 𝜑𝑅𝑆 )

Proof

Step Hyp Ref Expression
1 dvle2.1 ( 𝜑𝐴 ∈ ℝ )
2 dvle2.2 ( 𝜑𝐵 ∈ ℝ )
3 dvle2.3 ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
4 dvle2.4 ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) )
5 dvle2.5 ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐹 ) )
6 dvle2.6 ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐺 ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐻 ) )
7 dvle2.7 ( ( 𝜑𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹𝐻 )
8 dvle2.8 ( 𝑥 = 𝐴𝐸 = 𝑃 )
9 dvle2.9 ( 𝑥 = 𝐴𝐺 = 𝑄 )
10 dvle2.10 ( 𝑥 = 𝐵𝐸 = 𝑅 )
11 dvle2.11 ( 𝑥 = 𝐵𝐺 = 𝑆 )
12 dvle2.12 ( 𝜑𝑃𝑄 )
13 dvle2.13 ( 𝜑𝐴𝐵 )
14 10 eleq1d ( 𝑥 = 𝐵 → ( 𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ ) )
15 cncff ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
16 3 15 syl ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
17 eqid ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 )
18 17 fmpt ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐸 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐸 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
19 16 18 sylibr ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐸 ∈ ℝ )
20 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
21 2 leidd ( 𝜑𝐵𝐵 )
22 20 13 21 3jca ( 𝜑 → ( 𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵 ) )
23 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
24 elicc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵 ) ) )
25 23 20 24 syl2anc ( 𝜑 → ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵 ) ) )
26 22 25 mpbird ( 𝜑𝐵 ∈ ( 𝐴 [,] 𝐵 ) )
27 14 19 26 rspcdva ( 𝜑𝑅 ∈ ℝ )
28 8 eleq1d ( 𝑥 = 𝐴 → ( 𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ ) )
29 1 leidd ( 𝜑𝐴𝐴 )
30 23 29 13 3jca ( 𝜑 → ( 𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵 ) )
31 elicc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵 ) ) )
32 23 20 31 syl2anc ( 𝜑 → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵 ) ) )
33 30 32 mpbird ( 𝜑𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
34 28 19 33 rspcdva ( 𝜑𝑃 ∈ ℝ )
35 27 34 resubcld ( 𝜑 → ( 𝑅𝑃 ) ∈ ℝ )
36 11 eleq1d ( 𝑥 = 𝐵 → ( 𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ ) )
37 cncff ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
38 4 37 syl ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
39 eqid ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 )
40 39 fmpt ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐺 ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ )
41 38 40 sylibr ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) 𝐺 ∈ ℝ )
42 36 41 26 rspcdva ( 𝜑𝑆 ∈ ℝ )
43 9 eleq1d ( 𝑥 = 𝐴 → ( 𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ ) )
44 43 41 33 rspcdva ( 𝜑𝑄 ∈ ℝ )
45 42 44 resubcld ( 𝜑 → ( 𝑆𝑄 ) ∈ ℝ )
46 1 2 3 5 4 6 7 33 26 13 8 9 10 11 dvle ( 𝜑 → ( 𝑅𝑃 ) ≤ ( 𝑆𝑄 ) )
47 35 34 45 44 46 12 le2addd ( 𝜑 → ( ( 𝑅𝑃 ) + 𝑃 ) ≤ ( ( 𝑆𝑄 ) + 𝑄 ) )
48 27 recnd ( 𝜑𝑅 ∈ ℂ )
49 34 recnd ( 𝜑𝑃 ∈ ℂ )
50 48 49 npcand ( 𝜑 → ( ( 𝑅𝑃 ) + 𝑃 ) = 𝑅 )
51 42 recnd ( 𝜑𝑆 ∈ ℂ )
52 44 recnd ( 𝜑𝑄 ∈ ℂ )
53 51 52 npcand ( 𝜑 → ( ( 𝑆𝑄 ) + 𝑄 ) = 𝑆 )
54 50 53 breq12d ( 𝜑 → ( ( ( 𝑅𝑃 ) + 𝑃 ) ≤ ( ( 𝑆𝑄 ) + 𝑄 ) ↔ 𝑅𝑆 ) )
55 47 54 mpbid ( 𝜑𝑅𝑆 )