| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvle2.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
dvle2.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
dvle2.3 |
|- ( ph -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 4 |
|
dvle2.4 |
|- ( ph -> ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 5 |
|
dvle2.5 |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> E ) ) = ( x e. ( A (,) B ) |-> F ) ) |
| 6 |
|
dvle2.6 |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> G ) ) = ( x e. ( A (,) B ) |-> H ) ) |
| 7 |
|
dvle2.7 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> F <_ H ) |
| 8 |
|
dvle2.8 |
|- ( x = A -> E = P ) |
| 9 |
|
dvle2.9 |
|- ( x = A -> G = Q ) |
| 10 |
|
dvle2.10 |
|- ( x = B -> E = R ) |
| 11 |
|
dvle2.11 |
|- ( x = B -> G = S ) |
| 12 |
|
dvle2.12 |
|- ( ph -> P <_ Q ) |
| 13 |
|
dvle2.13 |
|- ( ph -> A <_ B ) |
| 14 |
10
|
eleq1d |
|- ( x = B -> ( E e. RR <-> R e. RR ) ) |
| 15 |
|
cncff |
|- ( ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) -> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR ) |
| 16 |
3 15
|
syl |
|- ( ph -> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR ) |
| 17 |
|
eqid |
|- ( x e. ( A [,] B ) |-> E ) = ( x e. ( A [,] B ) |-> E ) |
| 18 |
17
|
fmpt |
|- ( A. x e. ( A [,] B ) E e. RR <-> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR ) |
| 19 |
16 18
|
sylibr |
|- ( ph -> A. x e. ( A [,] B ) E e. RR ) |
| 20 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 21 |
2
|
leidd |
|- ( ph -> B <_ B ) |
| 22 |
20 13 21
|
3jca |
|- ( ph -> ( B e. RR* /\ A <_ B /\ B <_ B ) ) |
| 23 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 24 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) ) |
| 25 |
23 20 24
|
syl2anc |
|- ( ph -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) ) |
| 26 |
22 25
|
mpbird |
|- ( ph -> B e. ( A [,] B ) ) |
| 27 |
14 19 26
|
rspcdva |
|- ( ph -> R e. RR ) |
| 28 |
8
|
eleq1d |
|- ( x = A -> ( E e. RR <-> P e. RR ) ) |
| 29 |
1
|
leidd |
|- ( ph -> A <_ A ) |
| 30 |
23 29 13
|
3jca |
|- ( ph -> ( A e. RR* /\ A <_ A /\ A <_ B ) ) |
| 31 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A e. ( A [,] B ) <-> ( A e. RR* /\ A <_ A /\ A <_ B ) ) ) |
| 32 |
23 20 31
|
syl2anc |
|- ( ph -> ( A e. ( A [,] B ) <-> ( A e. RR* /\ A <_ A /\ A <_ B ) ) ) |
| 33 |
30 32
|
mpbird |
|- ( ph -> A e. ( A [,] B ) ) |
| 34 |
28 19 33
|
rspcdva |
|- ( ph -> P e. RR ) |
| 35 |
27 34
|
resubcld |
|- ( ph -> ( R - P ) e. RR ) |
| 36 |
11
|
eleq1d |
|- ( x = B -> ( G e. RR <-> S e. RR ) ) |
| 37 |
|
cncff |
|- ( ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) -> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR ) |
| 38 |
4 37
|
syl |
|- ( ph -> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR ) |
| 39 |
|
eqid |
|- ( x e. ( A [,] B ) |-> G ) = ( x e. ( A [,] B ) |-> G ) |
| 40 |
39
|
fmpt |
|- ( A. x e. ( A [,] B ) G e. RR <-> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR ) |
| 41 |
38 40
|
sylibr |
|- ( ph -> A. x e. ( A [,] B ) G e. RR ) |
| 42 |
36 41 26
|
rspcdva |
|- ( ph -> S e. RR ) |
| 43 |
9
|
eleq1d |
|- ( x = A -> ( G e. RR <-> Q e. RR ) ) |
| 44 |
43 41 33
|
rspcdva |
|- ( ph -> Q e. RR ) |
| 45 |
42 44
|
resubcld |
|- ( ph -> ( S - Q ) e. RR ) |
| 46 |
1 2 3 5 4 6 7 33 26 13 8 9 10 11
|
dvle |
|- ( ph -> ( R - P ) <_ ( S - Q ) ) |
| 47 |
35 34 45 44 46 12
|
le2addd |
|- ( ph -> ( ( R - P ) + P ) <_ ( ( S - Q ) + Q ) ) |
| 48 |
27
|
recnd |
|- ( ph -> R e. CC ) |
| 49 |
34
|
recnd |
|- ( ph -> P e. CC ) |
| 50 |
48 49
|
npcand |
|- ( ph -> ( ( R - P ) + P ) = R ) |
| 51 |
42
|
recnd |
|- ( ph -> S e. CC ) |
| 52 |
44
|
recnd |
|- ( ph -> Q e. CC ) |
| 53 |
51 52
|
npcand |
|- ( ph -> ( ( S - Q ) + Q ) = S ) |
| 54 |
50 53
|
breq12d |
|- ( ph -> ( ( ( R - P ) + P ) <_ ( ( S - Q ) + Q ) <-> R <_ S ) ) |
| 55 |
47 54
|
mpbid |
|- ( ph -> R <_ S ) |