Metamath Proof Explorer


Theorem dvle2

Description: Collapsed dvle . (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses dvle2.1
|- ( ph -> A e. RR )
dvle2.2
|- ( ph -> B e. RR )
dvle2.3
|- ( ph -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) )
dvle2.4
|- ( ph -> ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) )
dvle2.5
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> E ) ) = ( x e. ( A (,) B ) |-> F ) )
dvle2.6
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> G ) ) = ( x e. ( A (,) B ) |-> H ) )
dvle2.7
|- ( ( ph /\ x e. ( A (,) B ) ) -> F <_ H )
dvle2.8
|- ( x = A -> E = P )
dvle2.9
|- ( x = A -> G = Q )
dvle2.10
|- ( x = B -> E = R )
dvle2.11
|- ( x = B -> G = S )
dvle2.12
|- ( ph -> P <_ Q )
dvle2.13
|- ( ph -> A <_ B )
Assertion dvle2
|- ( ph -> R <_ S )

Proof

Step Hyp Ref Expression
1 dvle2.1
 |-  ( ph -> A e. RR )
2 dvle2.2
 |-  ( ph -> B e. RR )
3 dvle2.3
 |-  ( ph -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) )
4 dvle2.4
 |-  ( ph -> ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) )
5 dvle2.5
 |-  ( ph -> ( RR _D ( x e. ( A (,) B ) |-> E ) ) = ( x e. ( A (,) B ) |-> F ) )
6 dvle2.6
 |-  ( ph -> ( RR _D ( x e. ( A (,) B ) |-> G ) ) = ( x e. ( A (,) B ) |-> H ) )
7 dvle2.7
 |-  ( ( ph /\ x e. ( A (,) B ) ) -> F <_ H )
8 dvle2.8
 |-  ( x = A -> E = P )
9 dvle2.9
 |-  ( x = A -> G = Q )
10 dvle2.10
 |-  ( x = B -> E = R )
11 dvle2.11
 |-  ( x = B -> G = S )
12 dvle2.12
 |-  ( ph -> P <_ Q )
13 dvle2.13
 |-  ( ph -> A <_ B )
14 10 eleq1d
 |-  ( x = B -> ( E e. RR <-> R e. RR ) )
15 cncff
 |-  ( ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) -> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR )
16 3 15 syl
 |-  ( ph -> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR )
17 eqid
 |-  ( x e. ( A [,] B ) |-> E ) = ( x e. ( A [,] B ) |-> E )
18 17 fmpt
 |-  ( A. x e. ( A [,] B ) E e. RR <-> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR )
19 16 18 sylibr
 |-  ( ph -> A. x e. ( A [,] B ) E e. RR )
20 2 rexrd
 |-  ( ph -> B e. RR* )
21 2 leidd
 |-  ( ph -> B <_ B )
22 20 13 21 3jca
 |-  ( ph -> ( B e. RR* /\ A <_ B /\ B <_ B ) )
23 1 rexrd
 |-  ( ph -> A e. RR* )
24 elicc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) )
25 23 20 24 syl2anc
 |-  ( ph -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) )
26 22 25 mpbird
 |-  ( ph -> B e. ( A [,] B ) )
27 14 19 26 rspcdva
 |-  ( ph -> R e. RR )
28 8 eleq1d
 |-  ( x = A -> ( E e. RR <-> P e. RR ) )
29 1 leidd
 |-  ( ph -> A <_ A )
30 23 29 13 3jca
 |-  ( ph -> ( A e. RR* /\ A <_ A /\ A <_ B ) )
31 elicc1
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A e. ( A [,] B ) <-> ( A e. RR* /\ A <_ A /\ A <_ B ) ) )
32 23 20 31 syl2anc
 |-  ( ph -> ( A e. ( A [,] B ) <-> ( A e. RR* /\ A <_ A /\ A <_ B ) ) )
33 30 32 mpbird
 |-  ( ph -> A e. ( A [,] B ) )
34 28 19 33 rspcdva
 |-  ( ph -> P e. RR )
35 27 34 resubcld
 |-  ( ph -> ( R - P ) e. RR )
36 11 eleq1d
 |-  ( x = B -> ( G e. RR <-> S e. RR ) )
37 cncff
 |-  ( ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) -> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR )
38 4 37 syl
 |-  ( ph -> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR )
39 eqid
 |-  ( x e. ( A [,] B ) |-> G ) = ( x e. ( A [,] B ) |-> G )
40 39 fmpt
 |-  ( A. x e. ( A [,] B ) G e. RR <-> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR )
41 38 40 sylibr
 |-  ( ph -> A. x e. ( A [,] B ) G e. RR )
42 36 41 26 rspcdva
 |-  ( ph -> S e. RR )
43 9 eleq1d
 |-  ( x = A -> ( G e. RR <-> Q e. RR ) )
44 43 41 33 rspcdva
 |-  ( ph -> Q e. RR )
45 42 44 resubcld
 |-  ( ph -> ( S - Q ) e. RR )
46 1 2 3 5 4 6 7 33 26 13 8 9 10 11 dvle
 |-  ( ph -> ( R - P ) <_ ( S - Q ) )
47 35 34 45 44 46 12 le2addd
 |-  ( ph -> ( ( R - P ) + P ) <_ ( ( S - Q ) + Q ) )
48 27 recnd
 |-  ( ph -> R e. CC )
49 34 recnd
 |-  ( ph -> P e. CC )
50 48 49 npcand
 |-  ( ph -> ( ( R - P ) + P ) = R )
51 42 recnd
 |-  ( ph -> S e. CC )
52 44 recnd
 |-  ( ph -> Q e. CC )
53 51 52 npcand
 |-  ( ph -> ( ( S - Q ) + Q ) = S )
54 50 53 breq12d
 |-  ( ph -> ( ( ( R - P ) + P ) <_ ( ( S - Q ) + Q ) <-> R <_ S ) )
55 47 54 mpbid
 |-  ( ph -> R <_ S )