Step |
Hyp |
Ref |
Expression |
1 |
|
dvle2.1 |
|- ( ph -> A e. RR ) |
2 |
|
dvle2.2 |
|- ( ph -> B e. RR ) |
3 |
|
dvle2.3 |
|- ( ph -> ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) ) |
4 |
|
dvle2.4 |
|- ( ph -> ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) ) |
5 |
|
dvle2.5 |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> E ) ) = ( x e. ( A (,) B ) |-> F ) ) |
6 |
|
dvle2.6 |
|- ( ph -> ( RR _D ( x e. ( A (,) B ) |-> G ) ) = ( x e. ( A (,) B ) |-> H ) ) |
7 |
|
dvle2.7 |
|- ( ( ph /\ x e. ( A (,) B ) ) -> F <_ H ) |
8 |
|
dvle2.8 |
|- ( x = A -> E = P ) |
9 |
|
dvle2.9 |
|- ( x = A -> G = Q ) |
10 |
|
dvle2.10 |
|- ( x = B -> E = R ) |
11 |
|
dvle2.11 |
|- ( x = B -> G = S ) |
12 |
|
dvle2.12 |
|- ( ph -> P <_ Q ) |
13 |
|
dvle2.13 |
|- ( ph -> A <_ B ) |
14 |
10
|
eleq1d |
|- ( x = B -> ( E e. RR <-> R e. RR ) ) |
15 |
|
cncff |
|- ( ( x e. ( A [,] B ) |-> E ) e. ( ( A [,] B ) -cn-> RR ) -> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR ) |
16 |
3 15
|
syl |
|- ( ph -> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR ) |
17 |
|
eqid |
|- ( x e. ( A [,] B ) |-> E ) = ( x e. ( A [,] B ) |-> E ) |
18 |
17
|
fmpt |
|- ( A. x e. ( A [,] B ) E e. RR <-> ( x e. ( A [,] B ) |-> E ) : ( A [,] B ) --> RR ) |
19 |
16 18
|
sylibr |
|- ( ph -> A. x e. ( A [,] B ) E e. RR ) |
20 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
21 |
2
|
leidd |
|- ( ph -> B <_ B ) |
22 |
20 13 21
|
3jca |
|- ( ph -> ( B e. RR* /\ A <_ B /\ B <_ B ) ) |
23 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
24 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) ) |
25 |
23 20 24
|
syl2anc |
|- ( ph -> ( B e. ( A [,] B ) <-> ( B e. RR* /\ A <_ B /\ B <_ B ) ) ) |
26 |
22 25
|
mpbird |
|- ( ph -> B e. ( A [,] B ) ) |
27 |
14 19 26
|
rspcdva |
|- ( ph -> R e. RR ) |
28 |
8
|
eleq1d |
|- ( x = A -> ( E e. RR <-> P e. RR ) ) |
29 |
1
|
leidd |
|- ( ph -> A <_ A ) |
30 |
23 29 13
|
3jca |
|- ( ph -> ( A e. RR* /\ A <_ A /\ A <_ B ) ) |
31 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A e. ( A [,] B ) <-> ( A e. RR* /\ A <_ A /\ A <_ B ) ) ) |
32 |
23 20 31
|
syl2anc |
|- ( ph -> ( A e. ( A [,] B ) <-> ( A e. RR* /\ A <_ A /\ A <_ B ) ) ) |
33 |
30 32
|
mpbird |
|- ( ph -> A e. ( A [,] B ) ) |
34 |
28 19 33
|
rspcdva |
|- ( ph -> P e. RR ) |
35 |
27 34
|
resubcld |
|- ( ph -> ( R - P ) e. RR ) |
36 |
11
|
eleq1d |
|- ( x = B -> ( G e. RR <-> S e. RR ) ) |
37 |
|
cncff |
|- ( ( x e. ( A [,] B ) |-> G ) e. ( ( A [,] B ) -cn-> RR ) -> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR ) |
38 |
4 37
|
syl |
|- ( ph -> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR ) |
39 |
|
eqid |
|- ( x e. ( A [,] B ) |-> G ) = ( x e. ( A [,] B ) |-> G ) |
40 |
39
|
fmpt |
|- ( A. x e. ( A [,] B ) G e. RR <-> ( x e. ( A [,] B ) |-> G ) : ( A [,] B ) --> RR ) |
41 |
38 40
|
sylibr |
|- ( ph -> A. x e. ( A [,] B ) G e. RR ) |
42 |
36 41 26
|
rspcdva |
|- ( ph -> S e. RR ) |
43 |
9
|
eleq1d |
|- ( x = A -> ( G e. RR <-> Q e. RR ) ) |
44 |
43 41 33
|
rspcdva |
|- ( ph -> Q e. RR ) |
45 |
42 44
|
resubcld |
|- ( ph -> ( S - Q ) e. RR ) |
46 |
1 2 3 5 4 6 7 33 26 13 8 9 10 11
|
dvle |
|- ( ph -> ( R - P ) <_ ( S - Q ) ) |
47 |
35 34 45 44 46 12
|
le2addd |
|- ( ph -> ( ( R - P ) + P ) <_ ( ( S - Q ) + Q ) ) |
48 |
27
|
recnd |
|- ( ph -> R e. CC ) |
49 |
34
|
recnd |
|- ( ph -> P e. CC ) |
50 |
48 49
|
npcand |
|- ( ph -> ( ( R - P ) + P ) = R ) |
51 |
42
|
recnd |
|- ( ph -> S e. CC ) |
52 |
44
|
recnd |
|- ( ph -> Q e. CC ) |
53 |
51 52
|
npcand |
|- ( ph -> ( ( S - Q ) + Q ) = S ) |
54 |
50 53
|
breq12d |
|- ( ph -> ( ( ( R - P ) + P ) <_ ( ( S - Q ) + Q ) <-> R <_ S ) ) |
55 |
47 54
|
mpbid |
|- ( ph -> R <_ S ) |