| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p5.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p5.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p5.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
|
aks4d1p5.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
| 5 |
|
aks4d1p5.5 |
⊢ ( ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) → ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) |
| 6 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) → 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 7 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
| 9 |
|
elfznn |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ∈ ℕ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 11 |
10
|
nnred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 12 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 13 |
1 12
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 14 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 15 |
|
3re |
⊢ 3 ∈ ℝ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 17 |
13
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 18 |
|
3pos |
⊢ 0 < 3 |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 20 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 22 |
14 16 17 19 21
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 23 |
13 22
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 24 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 25 |
23 24
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 26 |
|
gcdnncl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑅 ∈ ℕ ) → ( 𝑁 gcd 𝑅 ) ∈ ℕ ) |
| 27 |
25 10 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) ∈ ℕ ) |
| 28 |
27
|
nnred |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) ∈ ℝ ) |
| 29 |
27
|
nnne0d |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) ≠ 0 ) |
| 30 |
11 28 29
|
redivcld |
⊢ ( 𝜑 → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℝ ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℝ ) |
| 32 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ∈ ℝ ) |
| 33 |
31 32
|
ltnled |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) ) |
| 34 |
33
|
biimprd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) ) |
| 35 |
34
|
imp |
⊢ ( ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) |
| 36 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ) |
| 37 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) ) |
| 39 |
|
elfznn |
⊢ ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℕ ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℕ ) |
| 41 |
40
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℝ ) |
| 42 |
41
|
ex |
⊢ ( 𝜑 → ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℝ ) ) |
| 43 |
42
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ⊆ ℝ ) |
| 44 |
38 43
|
sstrd |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) |
| 46 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ∈ Fin ) |
| 47 |
46 38
|
ssfid |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ) |
| 49 |
1 2 3
|
aks4d1p3 |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
| 50 |
|
rabn0 |
⊢ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ↔ ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
| 51 |
49 50
|
sylibr |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ) |
| 53 |
|
fiminre |
⊢ ( ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∀ 𝑦 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } 𝑥 ≤ 𝑦 ) |
| 54 |
45 48 52 53
|
syl3anc |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ∃ 𝑥 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∀ 𝑦 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } 𝑥 ≤ 𝑦 ) |
| 55 |
|
breq1 |
⊢ ( 𝑟 = ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) → ( 𝑟 ∥ 𝐴 ↔ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) ) |
| 56 |
55
|
notbid |
⊢ ( 𝑟 = ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) → ( ¬ 𝑟 ∥ 𝐴 ↔ ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) ) |
| 57 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 1 ∈ ℤ ) |
| 58 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 59 |
|
2re |
⊢ 2 ∈ ℝ |
| 60 |
59
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 61 |
|
2pos |
⊢ 0 < 2 |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 63 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 64 |
|
1lt2 |
⊢ 1 < 2 |
| 65 |
64
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 66 |
63 65
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 67 |
66
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 68 |
60 62 17 22 67
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 69 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
| 71 |
68 70
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
| 72 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 73 |
71 72
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 74 |
58 73
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝐵 ∈ ℤ ) |
| 76 |
25
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 77 |
|
divgcdnnr |
⊢ ( ( 𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℕ ) |
| 78 |
10 76 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℕ ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℕ ) |
| 80 |
79
|
nnzd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℤ ) |
| 81 |
79
|
nnge1d |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 1 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 82 |
75
|
zred |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝐵 ∈ ℝ ) |
| 83 |
10
|
nnrpd |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ∈ ℝ+ ) |
| 85 |
27
|
nnrpd |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) ∈ ℝ+ ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) ∈ ℝ+ ) |
| 87 |
32
|
recnd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ∈ ℂ ) |
| 88 |
84
|
rpne0d |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ≠ 0 ) |
| 89 |
87 88
|
dividd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / 𝑅 ) = 1 ) |
| 90 |
|
simpr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 1 < ( 𝑁 gcd 𝑅 ) ) |
| 91 |
89 90
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / 𝑅 ) < ( 𝑁 gcd 𝑅 ) ) |
| 92 |
32 84 86 91
|
ltdiv23d |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) |
| 93 |
31 32 92
|
ltled |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ≤ 𝑅 ) |
| 94 |
|
elfzle2 |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ≤ 𝐵 ) |
| 95 |
8 94
|
syl |
⊢ ( 𝜑 → 𝑅 ≤ 𝐵 ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ≤ 𝐵 ) |
| 97 |
31 32 82 93 96
|
letrd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ≤ 𝐵 ) |
| 98 |
57 75 80 81 97
|
elfzd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ( 1 ... 𝐵 ) ) |
| 99 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) → ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) |
| 100 |
|
exmidd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ∨ ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) ) |
| 101 |
5 99 100
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∥ 𝐴 ) |
| 102 |
56 98 101
|
elrabd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 103 |
|
lbinfle |
⊢ ( ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ∧ ∃ 𝑥 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∀ 𝑦 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } 𝑥 ≤ 𝑦 ∧ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 104 |
45 54 102 103
|
syl3anc |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 105 |
36 104
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 106 |
32 31
|
lenltd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ↔ ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) ) |
| 107 |
105 106
|
mpbid |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) |
| 108 |
107
|
adantr |
⊢ ( ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) → ¬ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) |
| 109 |
35 108
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) → 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 110 |
6 109
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 111 |
83
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ∈ ℝ ) |
| 113 |
92 107
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) ∈ ℕ ) |
| 114 |
113
|
nnrpd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) ∈ ℝ+ ) |
| 115 |
112
|
recnd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → 𝑅 ∈ ℂ ) |
| 116 |
115 88
|
dividd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / 𝑅 ) = 1 ) |
| 117 |
116 90
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / 𝑅 ) < ( 𝑁 gcd 𝑅 ) ) |
| 118 |
112 84 114 117
|
ltdiv23d |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ) |
| 119 |
78
|
nnred |
⊢ ( 𝜑 → ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ∈ ℝ ) |
| 120 |
119 111
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) < 𝑅 ↔ ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) ) |
| 122 |
118 121
|
mpbid |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ¬ 𝑅 ≤ ( 𝑅 / ( 𝑁 gcd 𝑅 ) ) ) |
| 123 |
110 122
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 124 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) = 1 ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 125 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) ∈ ℕ ) |
| 126 |
125
|
nnred |
⊢ ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) ∈ ℝ ) |
| 127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 gcd 𝑅 ) ∈ ℝ ) |
| 128 |
59
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → 2 ∈ ℝ ) |
| 129 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → 1 ∈ ℝ ) |
| 130 |
28 63
|
lenltd |
⊢ ( 𝜑 → ( ( 𝑁 gcd 𝑅 ) ≤ 1 ↔ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ) |
| 131 |
130
|
biimprd |
⊢ ( 𝜑 → ( ¬ 1 < ( 𝑁 gcd 𝑅 ) → ( 𝑁 gcd 𝑅 ) ≤ 1 ) ) |
| 132 |
131
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) ≤ 1 ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 gcd 𝑅 ) ≤ 1 ) |
| 134 |
64
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 2 ) |
| 135 |
127 129 128 133 134
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 gcd 𝑅 ) < 2 ) |
| 136 |
|
eluzle |
⊢ ( ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ ( 𝑁 gcd 𝑅 ) ) |
| 137 |
136
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → 2 ≤ ( 𝑁 gcd 𝑅 ) ) |
| 138 |
127 128 127 135 137
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 gcd 𝑅 ) < ( 𝑁 gcd 𝑅 ) ) |
| 139 |
127
|
ltnrd |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝑁 gcd 𝑅 ) < ( 𝑁 gcd 𝑅 ) ) |
| 140 |
138 139
|
pm2.21dd |
⊢ ( ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) ∧ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 141 |
|
elnn1uz2 |
⊢ ( ( 𝑁 gcd 𝑅 ) ∈ ℕ ↔ ( ( 𝑁 gcd 𝑅 ) = 1 ∨ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 142 |
125 141
|
sylib |
⊢ ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) → ( ( 𝑁 gcd 𝑅 ) = 1 ∨ ( 𝑁 gcd 𝑅 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 143 |
124 140 142
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ¬ 1 < ( 𝑁 gcd 𝑅 ) ) → ( 𝑁 gcd 𝑅 ) = 1 ) |
| 144 |
123 143
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑅 ) = 1 ) |