Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p6.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
2 |
|
aks4d1p6.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
3 |
|
aks4d1p6.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
4 |
|
aks4d1p6.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
5 |
|
aks4d1p6.5 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
6 |
|
aks4d1p6.6 |
⊢ ( 𝜑 → 𝑃 ∥ 𝑅 ) |
7 |
|
aks4d1p6.7 |
⊢ 𝐾 = ( 𝑃 pCnt 𝑅 ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐾 = ( 𝑃 pCnt 𝑅 ) ) |
9 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
11 |
|
elfznn |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ∈ ℕ ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
13 |
5 12
|
pccld |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝑅 ) ∈ ℕ0 ) |
14 |
8 13
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
15 |
14
|
nn0zd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
16 |
15
|
zred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
17 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
18 |
5 17
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
19 |
18
|
nnred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
20 |
18
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑃 ) |
21 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
22 |
|
2re |
⊢ 2 ∈ ℝ |
23 |
22
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
24 |
|
2pos |
⊢ 0 < 2 |
25 |
24
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
26 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
27 |
1 26
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
28 |
27
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
29 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
30 |
|
3re |
⊢ 3 ∈ ℝ |
31 |
30
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
32 |
|
3pos |
⊢ 0 < 3 |
33 |
32
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
34 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
35 |
1 34
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
36 |
29 31 28 33 35
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
37 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
38 |
|
1lt2 |
⊢ 1 < 2 |
39 |
38
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
40 |
37 39
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
41 |
40
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
42 |
23 25 28 36 41
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
43 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
44 |
43
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
45 |
42 44
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
46 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
48 |
21 47
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
49 |
48
|
zred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
50 |
|
9re |
⊢ 9 ∈ ℝ |
51 |
50
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
52 |
|
9pos |
⊢ 0 < 9 |
53 |
52
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
54 |
28 35
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
55 |
29 51 45 53 54
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
56 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
57 |
45 56
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
58 |
57 21
|
breqtrrd |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ 𝐵 ) |
59 |
29 45 49 55 58
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
60 |
48 59
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) ) |
61 |
|
elnnz |
⊢ ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) ) |
62 |
60 61
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
63 |
62
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
64 |
62
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐵 ) |
65 |
|
2z |
⊢ 2 ∈ ℤ |
66 |
65
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
67 |
66
|
zred |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
68 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
69 |
5 68
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
70 |
|
eluzle |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑃 ) |
71 |
69 70
|
syl |
⊢ ( 𝜑 → 2 ≤ 𝑃 ) |
72 |
37 67 19 39 71
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝑃 ) |
73 |
37 72
|
ltned |
⊢ ( 𝜑 → 1 ≠ 𝑃 ) |
74 |
73
|
necomd |
⊢ ( 𝜑 → 𝑃 ≠ 1 ) |
75 |
19 20 63 64 74
|
relogbcld |
⊢ ( 𝜑 → ( 𝑃 logb 𝐵 ) ∈ ℝ ) |
76 |
67 25 63 64 41
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
77 |
18
|
nnrpd |
⊢ ( 𝜑 → 𝑃 ∈ ℝ+ ) |
78 |
77
|
rpcnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
79 |
77
|
rpne0d |
⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
80 |
78 79 15
|
cxpexpzd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 𝐾 ) = ( 𝑃 ↑ 𝐾 ) ) |
81 |
19 14
|
reexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐾 ) ∈ ℝ ) |
82 |
12
|
nnred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
83 |
8
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ) |
84 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 ) |
85 |
5 12 84
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 ) |
86 |
18
|
nnzd |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
87 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝑃 pCnt 𝑅 ) ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ) |
88 |
86 13 87
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ) |
89 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ∧ 𝑅 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ≤ 𝑅 ) ) |
90 |
88 12 89
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ≤ 𝑅 ) ) |
91 |
85 90
|
mpd |
⊢ ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ≤ 𝑅 ) |
92 |
83 91
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐾 ) ≤ 𝑅 ) |
93 |
|
elfzle2 |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ≤ 𝐵 ) |
94 |
10 93
|
syl |
⊢ ( 𝜑 → 𝑅 ≤ 𝐵 ) |
95 |
81 82 63 92 94
|
letrd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐾 ) ≤ 𝐵 ) |
96 |
79 74
|
nelprd |
⊢ ( 𝜑 → ¬ 𝑃 ∈ { 0 , 1 } ) |
97 |
78 96
|
eldifd |
⊢ ( 𝜑 → 𝑃 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
98 |
63
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
99 |
29 64
|
ltned |
⊢ ( 𝜑 → 0 ≠ 𝐵 ) |
100 |
99
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
101 |
100
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐵 = 0 ) |
102 |
|
elsng |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) ) |
103 |
62 102
|
syl |
⊢ ( 𝜑 → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) ) |
104 |
101 103
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐵 ∈ { 0 } ) |
105 |
98 104
|
eldifd |
⊢ ( 𝜑 → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
106 |
|
cxplogb |
⊢ ( ( 𝑃 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐵 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑃 ↑𝑐 ( 𝑃 logb 𝐵 ) ) = 𝐵 ) |
107 |
97 105 106
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 ( 𝑃 logb 𝐵 ) ) = 𝐵 ) |
108 |
95 107
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐾 ) ≤ ( 𝑃 ↑𝑐 ( 𝑃 logb 𝐵 ) ) ) |
109 |
80 108
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑃 ↑𝑐 𝐾 ) ≤ ( 𝑃 ↑𝑐 ( 𝑃 logb 𝐵 ) ) ) |
110 |
77
|
rpred |
⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
111 |
37 67 110 39 71
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝑃 ) |
112 |
110 111 16 75
|
cxpled |
⊢ ( 𝜑 → ( 𝐾 ≤ ( 𝑃 logb 𝐵 ) ↔ ( 𝑃 ↑𝑐 𝐾 ) ≤ ( 𝑃 ↑𝑐 ( 𝑃 logb 𝐵 ) ) ) ) |
113 |
109 112
|
mpbird |
⊢ ( 𝜑 → 𝐾 ≤ ( 𝑃 logb 𝐵 ) ) |
114 |
23 39
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℝ+ ) |
115 |
110 111
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
116 |
62
|
nnrpd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
117 |
116
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℝ ) |
118 |
62
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝐵 ) |
119 |
63 118
|
logge0d |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝐵 ) ) |
120 |
|
2rp |
⊢ 2 ∈ ℝ+ |
121 |
120
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
122 |
121 77
|
logled |
⊢ ( 𝜑 → ( 2 ≤ 𝑃 ↔ ( log ‘ 2 ) ≤ ( log ‘ 𝑃 ) ) ) |
123 |
71 122
|
mpbid |
⊢ ( 𝜑 → ( log ‘ 2 ) ≤ ( log ‘ 𝑃 ) ) |
124 |
114 115 117 119 123
|
lediv2ad |
⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) ≤ ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) ) |
125 |
|
relogbval |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝑃 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) ) |
126 |
69 116 125
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) ) |
127 |
126
|
eqcomd |
⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) = ( 𝑃 logb 𝐵 ) ) |
128 |
66
|
uzidd |
⊢ ( 𝜑 → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
129 |
|
relogbval |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℝ+ ) → ( 2 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) ) |
130 |
128 116 129
|
syl2anc |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) ) |
131 |
130
|
eqcomd |
⊢ ( 𝜑 → ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) = ( 2 logb 𝐵 ) ) |
132 |
124 127 131
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑃 logb 𝐵 ) ≤ ( 2 logb 𝐵 ) ) |
133 |
16 75 76 113 132
|
letrd |
⊢ ( 𝜑 → 𝐾 ≤ ( 2 logb 𝐵 ) ) |
134 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≤ ( 2 logb 𝐵 ) ↔ 𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
135 |
76 15 134
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ≤ ( 2 logb 𝐵 ) ↔ 𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
136 |
133 135
|
mpbid |
⊢ ( 𝜑 → 𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |