Metamath Proof Explorer


Theorem aks4d1p6

Description: The maximal prime power exponent is smaller than the binary logarithm floor of B . (Contributed by metakunt, 30-Oct-2024)

Ref Expression
Hypotheses aks4d1p6.1 ( 𝜑𝑁 ∈ ( ℤ ‘ 3 ) )
aks4d1p6.2 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁𝑘 ) − 1 ) )
aks4d1p6.3 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) )
aks4d1p6.4 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟𝐴 } , ℝ , < )
aks4d1p6.5 ( 𝜑𝑃 ∈ ℙ )
aks4d1p6.6 ( 𝜑𝑃𝑅 )
aks4d1p6.7 𝐾 = ( 𝑃 pCnt 𝑅 )
Assertion aks4d1p6 ( 𝜑𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 aks4d1p6.1 ( 𝜑𝑁 ∈ ( ℤ ‘ 3 ) )
2 aks4d1p6.2 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁𝑘 ) − 1 ) )
3 aks4d1p6.3 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) )
4 aks4d1p6.4 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟𝐴 } , ℝ , < )
5 aks4d1p6.5 ( 𝜑𝑃 ∈ ℙ )
6 aks4d1p6.6 ( 𝜑𝑃𝑅 )
7 aks4d1p6.7 𝐾 = ( 𝑃 pCnt 𝑅 )
8 7 a1i ( 𝜑𝐾 = ( 𝑃 pCnt 𝑅 ) )
9 1 2 3 4 aks4d1p4 ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅𝐴 ) )
10 9 simpld ( 𝜑𝑅 ∈ ( 1 ... 𝐵 ) )
11 elfznn ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ∈ ℕ )
12 10 11 syl ( 𝜑𝑅 ∈ ℕ )
13 5 12 pccld ( 𝜑 → ( 𝑃 pCnt 𝑅 ) ∈ ℕ0 )
14 8 13 eqeltrd ( 𝜑𝐾 ∈ ℕ0 )
15 14 nn0zd ( 𝜑𝐾 ∈ ℤ )
16 15 zred ( 𝜑𝐾 ∈ ℝ )
17 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
18 5 17 syl ( 𝜑𝑃 ∈ ℕ )
19 18 nnred ( 𝜑𝑃 ∈ ℝ )
20 18 nngt0d ( 𝜑 → 0 < 𝑃 )
21 3 a1i ( 𝜑𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) )
22 2re 2 ∈ ℝ
23 22 a1i ( 𝜑 → 2 ∈ ℝ )
24 2pos 0 < 2
25 24 a1i ( 𝜑 → 0 < 2 )
26 eluzelz ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℤ )
27 1 26 syl ( 𝜑𝑁 ∈ ℤ )
28 27 zred ( 𝜑𝑁 ∈ ℝ )
29 0red ( 𝜑 → 0 ∈ ℝ )
30 3re 3 ∈ ℝ
31 30 a1i ( 𝜑 → 3 ∈ ℝ )
32 3pos 0 < 3
33 32 a1i ( 𝜑 → 0 < 3 )
34 eluzle ( 𝑁 ∈ ( ℤ ‘ 3 ) → 3 ≤ 𝑁 )
35 1 34 syl ( 𝜑 → 3 ≤ 𝑁 )
36 29 31 28 33 35 ltletrd ( 𝜑 → 0 < 𝑁 )
37 1red ( 𝜑 → 1 ∈ ℝ )
38 1lt2 1 < 2
39 38 a1i ( 𝜑 → 1 < 2 )
40 37 39 ltned ( 𝜑 → 1 ≠ 2 )
41 40 necomd ( 𝜑 → 2 ≠ 1 )
42 23 25 28 36 41 relogbcld ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ )
43 5nn0 5 ∈ ℕ0
44 43 a1i ( 𝜑 → 5 ∈ ℕ0 )
45 42 44 reexpcld ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ )
46 ceilcl ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ )
47 45 46 syl ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ )
48 21 47 eqeltrd ( 𝜑𝐵 ∈ ℤ )
49 48 zred ( 𝜑𝐵 ∈ ℝ )
50 9re 9 ∈ ℝ
51 50 a1i ( 𝜑 → 9 ∈ ℝ )
52 9pos 0 < 9
53 52 a1i ( 𝜑 → 0 < 9 )
54 28 35 3lexlogpow5ineq4 ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) )
55 29 51 45 53 54 lttrd ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) )
56 ceilge ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) )
57 45 56 syl ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) )
58 57 21 breqtrrd ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ 𝐵 )
59 29 45 49 55 58 ltletrd ( 𝜑 → 0 < 𝐵 )
60 48 59 jca ( 𝜑 → ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) )
61 elnnz ( 𝐵 ∈ ℕ ↔ ( 𝐵 ∈ ℤ ∧ 0 < 𝐵 ) )
62 60 61 sylibr ( 𝜑𝐵 ∈ ℕ )
63 62 nnred ( 𝜑𝐵 ∈ ℝ )
64 62 nngt0d ( 𝜑 → 0 < 𝐵 )
65 2z 2 ∈ ℤ
66 65 a1i ( 𝜑 → 2 ∈ ℤ )
67 66 zred ( 𝜑 → 2 ∈ ℝ )
68 prmuz2 ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ ‘ 2 ) )
69 5 68 syl ( 𝜑𝑃 ∈ ( ℤ ‘ 2 ) )
70 eluzle ( 𝑃 ∈ ( ℤ ‘ 2 ) → 2 ≤ 𝑃 )
71 69 70 syl ( 𝜑 → 2 ≤ 𝑃 )
72 37 67 19 39 71 ltletrd ( 𝜑 → 1 < 𝑃 )
73 37 72 ltned ( 𝜑 → 1 ≠ 𝑃 )
74 73 necomd ( 𝜑𝑃 ≠ 1 )
75 19 20 63 64 74 relogbcld ( 𝜑 → ( 𝑃 logb 𝐵 ) ∈ ℝ )
76 67 25 63 64 41 relogbcld ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ )
77 18 nnrpd ( 𝜑𝑃 ∈ ℝ+ )
78 77 rpcnd ( 𝜑𝑃 ∈ ℂ )
79 77 rpne0d ( 𝜑𝑃 ≠ 0 )
80 78 79 15 cxpexpzd ( 𝜑 → ( 𝑃𝑐 𝐾 ) = ( 𝑃𝐾 ) )
81 19 14 reexpcld ( 𝜑 → ( 𝑃𝐾 ) ∈ ℝ )
82 12 nnred ( 𝜑𝑅 ∈ ℝ )
83 8 oveq2d ( 𝜑 → ( 𝑃𝐾 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) )
84 pcdvds ( ( 𝑃 ∈ ℙ ∧ 𝑅 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 )
85 5 12 84 syl2anc ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 )
86 18 nnzd ( 𝜑𝑃 ∈ ℤ )
87 zexpcl ( ( 𝑃 ∈ ℤ ∧ ( 𝑃 pCnt 𝑅 ) ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ )
88 86 13 87 syl2anc ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ )
89 dvdsle ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∈ ℤ ∧ 𝑅 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ≤ 𝑅 ) )
90 88 12 89 syl2anc ( 𝜑 → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ∥ 𝑅 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ≤ 𝑅 ) )
91 85 90 mpd ( 𝜑 → ( 𝑃 ↑ ( 𝑃 pCnt 𝑅 ) ) ≤ 𝑅 )
92 83 91 eqbrtrd ( 𝜑 → ( 𝑃𝐾 ) ≤ 𝑅 )
93 elfzle2 ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅𝐵 )
94 10 93 syl ( 𝜑𝑅𝐵 )
95 81 82 63 92 94 letrd ( 𝜑 → ( 𝑃𝐾 ) ≤ 𝐵 )
96 79 74 nelprd ( 𝜑 → ¬ 𝑃 ∈ { 0 , 1 } )
97 78 96 eldifd ( 𝜑𝑃 ∈ ( ℂ ∖ { 0 , 1 } ) )
98 63 recnd ( 𝜑𝐵 ∈ ℂ )
99 29 64 ltned ( 𝜑 → 0 ≠ 𝐵 )
100 99 necomd ( 𝜑𝐵 ≠ 0 )
101 100 neneqd ( 𝜑 → ¬ 𝐵 = 0 )
102 elsng ( 𝐵 ∈ ℕ → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) )
103 62 102 syl ( 𝜑 → ( 𝐵 ∈ { 0 } ↔ 𝐵 = 0 ) )
104 101 103 mtbird ( 𝜑 → ¬ 𝐵 ∈ { 0 } )
105 98 104 eldifd ( 𝜑𝐵 ∈ ( ℂ ∖ { 0 } ) )
106 cxplogb ( ( 𝑃 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐵 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑃𝑐 ( 𝑃 logb 𝐵 ) ) = 𝐵 )
107 97 105 106 syl2anc ( 𝜑 → ( 𝑃𝑐 ( 𝑃 logb 𝐵 ) ) = 𝐵 )
108 95 107 breqtrrd ( 𝜑 → ( 𝑃𝐾 ) ≤ ( 𝑃𝑐 ( 𝑃 logb 𝐵 ) ) )
109 80 108 eqbrtrd ( 𝜑 → ( 𝑃𝑐 𝐾 ) ≤ ( 𝑃𝑐 ( 𝑃 logb 𝐵 ) ) )
110 77 rpred ( 𝜑𝑃 ∈ ℝ )
111 37 67 110 39 71 ltletrd ( 𝜑 → 1 < 𝑃 )
112 110 111 16 75 cxpled ( 𝜑 → ( 𝐾 ≤ ( 𝑃 logb 𝐵 ) ↔ ( 𝑃𝑐 𝐾 ) ≤ ( 𝑃𝑐 ( 𝑃 logb 𝐵 ) ) ) )
113 109 112 mpbird ( 𝜑𝐾 ≤ ( 𝑃 logb 𝐵 ) )
114 23 39 rplogcld ( 𝜑 → ( log ‘ 2 ) ∈ ℝ+ )
115 110 111 rplogcld ( 𝜑 → ( log ‘ 𝑃 ) ∈ ℝ+ )
116 62 nnrpd ( 𝜑𝐵 ∈ ℝ+ )
117 116 relogcld ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℝ )
118 62 nnge1d ( 𝜑 → 1 ≤ 𝐵 )
119 63 118 logge0d ( 𝜑 → 0 ≤ ( log ‘ 𝐵 ) )
120 2rp 2 ∈ ℝ+
121 120 a1i ( 𝜑 → 2 ∈ ℝ+ )
122 121 77 logled ( 𝜑 → ( 2 ≤ 𝑃 ↔ ( log ‘ 2 ) ≤ ( log ‘ 𝑃 ) ) )
123 71 122 mpbid ( 𝜑 → ( log ‘ 2 ) ≤ ( log ‘ 𝑃 ) )
124 114 115 117 119 123 lediv2ad ( 𝜑 → ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) ≤ ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) )
125 relogbval ( ( 𝑃 ∈ ( ℤ ‘ 2 ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝑃 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) )
126 69 116 125 syl2anc ( 𝜑 → ( 𝑃 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) )
127 126 eqcomd ( 𝜑 → ( ( log ‘ 𝐵 ) / ( log ‘ 𝑃 ) ) = ( 𝑃 logb 𝐵 ) )
128 66 uzidd ( 𝜑 → 2 ∈ ( ℤ ‘ 2 ) )
129 relogbval ( ( 2 ∈ ( ℤ ‘ 2 ) ∧ 𝐵 ∈ ℝ+ ) → ( 2 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) )
130 128 116 129 syl2anc ( 𝜑 → ( 2 logb 𝐵 ) = ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) )
131 130 eqcomd ( 𝜑 → ( ( log ‘ 𝐵 ) / ( log ‘ 2 ) ) = ( 2 logb 𝐵 ) )
132 124 127 131 3brtr3d ( 𝜑 → ( 𝑃 logb 𝐵 ) ≤ ( 2 logb 𝐵 ) )
133 16 75 76 113 132 letrd ( 𝜑𝐾 ≤ ( 2 logb 𝐵 ) )
134 flge ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 𝐾 ∈ ℤ ) → ( 𝐾 ≤ ( 2 logb 𝐵 ) ↔ 𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) )
135 76 15 134 syl2anc ( 𝜑 → ( 𝐾 ≤ ( 2 logb 𝐵 ) ↔ 𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) )
136 133 135 mpbid ( 𝜑𝐾 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) )