Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p7d1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
2 |
|
aks4d1p7d1.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
3 |
|
aks4d1p7d1.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
4 |
|
aks4d1p7d1.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
5 |
|
aks4d1p7d1.5 |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
6 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∈ ℙ ) |
7 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
9 |
|
elfznn |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ∈ ℕ ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑅 ∈ ℕ ) |
12 |
6 11
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ∈ ℕ0 ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ∈ ℕ0 ) |
14 |
13
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ∈ ℝ ) |
15 |
|
2re |
⊢ 2 ∈ ℝ |
16 |
15
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
17 |
|
2pos |
⊢ 0 < 2 |
18 |
17
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
19 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
20 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
22 |
21
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
23 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
24 |
|
3re |
⊢ 3 ∈ ℝ |
25 |
24
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
26 |
|
3pos |
⊢ 0 < 3 |
27 |
26
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
28 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
29 |
1 28
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
30 |
23 25 22 27 29
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
31 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
32 |
|
1lt2 |
⊢ 1 < 2 |
33 |
32
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
34 |
31 33
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
35 |
34
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
36 |
16 18 22 30 35
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
37 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
38 |
37
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
39 |
36 38
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
40 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
42 |
41
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
43 |
19 42
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
44 |
|
9re |
⊢ 9 ∈ ℝ |
45 |
44
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
46 |
|
9pos |
⊢ 0 < 9 |
47 |
46
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
48 |
22 29
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
49 |
23 45 39 47 48
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
50 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
51 |
39 50
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
52 |
23 39 42 49 51
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
53 |
52 19
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
54 |
16 18 43 53 35
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
55 |
54
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
56 |
55
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℝ ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℝ ) |
58 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∈ ℙ ) |
59 |
21 30
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
60 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
61 |
59 60
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ℕ ) |
63 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
64 |
63
|
addid2d |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
65 |
16
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
66 |
23 18
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
67 |
|
logbid1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 2 ) = 1 ) |
68 |
65 66 35 67
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 2 ) = 1 ) |
69 |
68
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 2 logb 2 ) ) |
70 |
64 69
|
eqtrd |
⊢ ( 𝜑 → ( 0 + 1 ) = ( 2 logb 2 ) ) |
71 |
|
2z |
⊢ 2 ∈ ℤ |
72 |
71
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
73 |
16
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
74 |
|
2lt9 |
⊢ 2 < 9 |
75 |
74
|
a1i |
⊢ ( 𝜑 → 2 < 9 ) |
76 |
16 45 75
|
ltled |
⊢ ( 𝜑 → 2 ≤ 9 ) |
77 |
45 39 42 48 51
|
ltletrd |
⊢ ( 𝜑 → 9 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
78 |
77 19
|
breqtrrd |
⊢ ( 𝜑 → 9 < 𝐵 ) |
79 |
45 43 78
|
ltled |
⊢ ( 𝜑 → 9 ≤ 𝐵 ) |
80 |
16 45 43 76 79
|
letrd |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
81 |
72 73 16 18 43 53 80
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 2 ) ≤ ( 2 logb 𝐵 ) ) |
82 |
70 81
|
eqbrtrd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( 2 logb 𝐵 ) ) |
83 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
84 |
83
|
peano2zd |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
85 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ ( 0 + 1 ) ∈ ℤ ) → ( ( 0 + 1 ) ≤ ( 2 logb 𝐵 ) ↔ ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
86 |
54 84 85
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 + 1 ) ≤ ( 2 logb 𝐵 ) ↔ ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
87 |
82 86
|
mpbid |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
88 |
83 55
|
zltp1led |
⊢ ( 𝜑 → ( 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ↔ ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
89 |
87 88
|
mpbird |
⊢ ( 𝜑 → 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
90 |
55 89
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
91 |
|
elnnz |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
92 |
90 91
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ ) |
93 |
92
|
nnnn0d |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
95 |
62 94
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℕ ) |
96 |
58 95
|
pccld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ∈ ℕ0 ) |
97 |
96
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ∈ ℝ ) |
98 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
99 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∥ 𝑅 ) |
100 |
|
eqid |
⊢ ( 𝑝 pCnt 𝑅 ) = ( 𝑝 pCnt 𝑅 ) |
101 |
98 2 3 4 6 99 100
|
aks4d1p6 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
102 |
101
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
103 |
58 62
|
pccld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑁 ) ∈ ℕ0 ) |
104 |
103
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑁 ) ∈ ℝ ) |
105 |
23 56 89
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
108 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) → ( 𝑝 ∈ ℙ → ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) ) |
109 |
5 108
|
syl |
⊢ ( 𝜑 → ( 𝑝 ∈ ℙ → ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) ) |
110 |
109
|
imp |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
111 |
110
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∥ 𝑁 ) |
112 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
113 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ℕ ) |
114 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑁 ) ∈ ℕ ↔ 𝑝 ∥ 𝑁 ) ) |
115 |
58 113 114
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ( 𝑝 pCnt 𝑁 ) ∈ ℕ ↔ 𝑝 ∥ 𝑁 ) ) |
116 |
111 115
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑁 ) ∈ ℕ ) |
117 |
|
nnge1 |
⊢ ( ( 𝑝 pCnt 𝑁 ) ∈ ℕ → 1 ≤ ( 𝑝 pCnt 𝑁 ) ) |
118 |
116 117
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 1 ≤ ( 𝑝 pCnt 𝑁 ) ) |
119 |
57 104 107 118
|
lemulge11d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ≤ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) · ( 𝑝 pCnt 𝑁 ) ) ) |
120 |
|
zq |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℚ ) |
121 |
21 120
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℚ ) |
122 |
61
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
123 |
121 122
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) |
125 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) |
126 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
128 |
|
pcexp |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ∧ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) = ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) · ( 𝑝 pCnt 𝑁 ) ) ) |
129 |
58 125 127 128
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) = ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) · ( 𝑝 pCnt 𝑁 ) ) ) |
130 |
119 129
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
131 |
14 57 97 102 130
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
132 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ¬ 𝑝 ∥ 𝑅 ) |
133 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 𝑝 ∈ ℙ ) |
134 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑅 ∈ ℕ ) |
135 |
134
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 𝑅 ∈ ℕ ) |
136 |
|
pceq0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑅 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑅 ) = 0 ↔ ¬ 𝑝 ∥ 𝑅 ) ) |
137 |
133 135 136
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( ( 𝑝 pCnt 𝑅 ) = 0 ↔ ¬ 𝑝 ∥ 𝑅 ) ) |
138 |
132 137
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) = 0 ) |
139 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ℕ ) |
140 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
142 |
139 141
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℕ ) |
143 |
133 142
|
pccld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ∈ ℕ0 ) |
144 |
143
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 0 ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
145 |
138 144
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
146 |
131 145
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
147 |
146
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
148 |
8
|
elfzelzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
149 |
21 93
|
zexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) |
150 |
|
pc2dvds |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) ) |
151 |
148 149 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) ) |
152 |
147 151
|
mpbird |
⊢ ( 𝜑 → 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |