| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p7d1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p7d1.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p7d1.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
|
aks4d1p7d1.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
| 5 |
|
aks4d1p7d1.5 |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 6 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∈ ℙ ) |
| 7 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
| 9 |
|
elfznn |
⊢ ( 𝑅 ∈ ( 1 ... 𝐵 ) → 𝑅 ∈ ℕ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ ℕ ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑅 ∈ ℕ ) |
| 12 |
6 11
|
pccld |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ∈ ℕ0 ) |
| 13 |
12
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ∈ ℕ0 ) |
| 14 |
13
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ∈ ℝ ) |
| 15 |
|
2re |
⊢ 2 ∈ ℝ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 17 |
|
2pos |
⊢ 0 < 2 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 19 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 20 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 |
21
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 23 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 24 |
|
3re |
⊢ 3 ∈ ℝ |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 26 |
|
3pos |
⊢ 0 < 3 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 28 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 29 |
1 28
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 30 |
23 25 22 27 29
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 31 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 32 |
|
1lt2 |
⊢ 1 < 2 |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 34 |
31 33
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 35 |
34
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 36 |
16 18 22 30 35
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 37 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
| 39 |
36 38
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
| 40 |
|
ceilcl |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 42 |
41
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
| 43 |
19 42
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 44 |
|
9re |
⊢ 9 ∈ ℝ |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
| 46 |
|
9pos |
⊢ 0 < 9 |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
| 48 |
22 29
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 49 |
23 45 39 47 48
|
lttrd |
⊢ ( 𝜑 → 0 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 50 |
|
ceilge |
⊢ ( ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 51 |
39 50
|
syl |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 52 |
23 39 42 49 51
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 53 |
52 19
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 54 |
16 18 43 53 35
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
| 55 |
54
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
| 56 |
55
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℝ ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℝ ) |
| 58 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∈ ℙ ) |
| 59 |
21 30
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 60 |
|
elnnz |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 61 |
59 60
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ℕ ) |
| 63 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 64 |
63
|
addlidd |
⊢ ( 𝜑 → ( 0 + 1 ) = 1 ) |
| 65 |
16
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 66 |
23 18
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 67 |
|
logbid1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 2 ) = 1 ) |
| 68 |
65 66 35 67
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 2 ) = 1 ) |
| 69 |
68
|
eqcomd |
⊢ ( 𝜑 → 1 = ( 2 logb 2 ) ) |
| 70 |
64 69
|
eqtrd |
⊢ ( 𝜑 → ( 0 + 1 ) = ( 2 logb 2 ) ) |
| 71 |
|
2z |
⊢ 2 ∈ ℤ |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 73 |
16
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 74 |
|
2lt9 |
⊢ 2 < 9 |
| 75 |
74
|
a1i |
⊢ ( 𝜑 → 2 < 9 ) |
| 76 |
16 45 75
|
ltled |
⊢ ( 𝜑 → 2 ≤ 9 ) |
| 77 |
45 39 42 48 51
|
ltletrd |
⊢ ( 𝜑 → 9 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 78 |
77 19
|
breqtrrd |
⊢ ( 𝜑 → 9 < 𝐵 ) |
| 79 |
45 43 78
|
ltled |
⊢ ( 𝜑 → 9 ≤ 𝐵 ) |
| 80 |
16 45 43 76 79
|
letrd |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
| 81 |
72 73 16 18 43 53 80
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 2 ) ≤ ( 2 logb 𝐵 ) ) |
| 82 |
70 81
|
eqbrtrd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( 2 logb 𝐵 ) ) |
| 83 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 84 |
83
|
peano2zd |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
| 85 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ ( 0 + 1 ) ∈ ℤ ) → ( ( 0 + 1 ) ≤ ( 2 logb 𝐵 ) ↔ ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 86 |
54 84 85
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 + 1 ) ≤ ( 2 logb 𝐵 ) ↔ ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 87 |
82 86
|
mpbid |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 88 |
83 55
|
zltp1led |
⊢ ( 𝜑 → ( 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ↔ ( 0 + 1 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 89 |
87 88
|
mpbird |
⊢ ( 𝜑 → 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 90 |
55 89
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 91 |
|
elnnz |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 < ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 92 |
90 91
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ ) |
| 93 |
92
|
nnnn0d |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 95 |
62 94
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℕ ) |
| 96 |
58 95
|
pccld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ∈ ℕ0 ) |
| 97 |
96
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ∈ ℝ ) |
| 98 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 99 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∥ 𝑅 ) |
| 100 |
|
eqid |
⊢ ( 𝑝 pCnt 𝑅 ) = ( 𝑝 pCnt 𝑅 ) |
| 101 |
98 2 3 4 6 99 100
|
aks4d1p6 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 102 |
101
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 103 |
58 62
|
pccld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑁 ) ∈ ℕ0 ) |
| 104 |
103
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑁 ) ∈ ℝ ) |
| 105 |
23 56 89
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 108 |
|
rsp |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) → ( 𝑝 ∈ ℙ → ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) ) |
| 109 |
5 108
|
syl |
⊢ ( 𝜑 → ( 𝑝 ∈ ℙ → ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) ) |
| 110 |
109
|
imp |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 111 |
110
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑝 ∥ 𝑁 ) |
| 112 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
| 113 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ℕ ) |
| 114 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑁 ) ∈ ℕ ↔ 𝑝 ∥ 𝑁 ) ) |
| 115 |
58 113 114
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ( 𝑝 pCnt 𝑁 ) ∈ ℕ ↔ 𝑝 ∥ 𝑁 ) ) |
| 116 |
111 115
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑁 ) ∈ ℕ ) |
| 117 |
|
nnge1 |
⊢ ( ( 𝑝 pCnt 𝑁 ) ∈ ℕ → 1 ≤ ( 𝑝 pCnt 𝑁 ) ) |
| 118 |
116 117
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → 1 ≤ ( 𝑝 pCnt 𝑁 ) ) |
| 119 |
57 104 107 118
|
lemulge11d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ≤ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) · ( 𝑝 pCnt 𝑁 ) ) ) |
| 120 |
|
zq |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℚ ) |
| 121 |
21 120
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℚ ) |
| 122 |
61
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 123 |
121 122
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) |
| 125 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) |
| 126 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
| 127 |
126
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
| 128 |
|
pcexp |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ∧ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) = ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) · ( 𝑝 pCnt 𝑁 ) ) ) |
| 129 |
58 125 127 128
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) = ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) · ( 𝑝 pCnt 𝑁 ) ) ) |
| 130 |
119 129
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 131 |
14 57 97 102 130
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 132 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ¬ 𝑝 ∥ 𝑅 ) |
| 133 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 𝑝 ∈ ℙ ) |
| 134 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑅 ∈ ℕ ) |
| 135 |
134
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 𝑅 ∈ ℕ ) |
| 136 |
|
pceq0 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑅 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑅 ) = 0 ↔ ¬ 𝑝 ∥ 𝑅 ) ) |
| 137 |
133 135 136
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( ( 𝑝 pCnt 𝑅 ) = 0 ↔ ¬ 𝑝 ∥ 𝑅 ) ) |
| 138 |
132 137
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) = 0 ) |
| 139 |
112
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 𝑁 ∈ ℕ ) |
| 140 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 141 |
140
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 142 |
139 141
|
nnexpcld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℕ ) |
| 143 |
133 142
|
pccld |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ∈ ℕ0 ) |
| 144 |
143
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → 0 ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 145 |
138 144
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ ¬ 𝑝 ∥ 𝑅 ) → ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 146 |
131 145
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 147 |
146
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 148 |
8
|
elfzelzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
| 149 |
21 93
|
zexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) |
| 150 |
|
pc2dvds |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) ) |
| 151 |
148 149 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑅 ) ≤ ( 𝑝 pCnt ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) ) |
| 152 |
147 151
|
mpbird |
⊢ ( 𝜑 → 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |