| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p7d1.1 |
|
| 2 |
|
aks4d1p7d1.2 |
|
| 3 |
|
aks4d1p7d1.3 |
|
| 4 |
|
aks4d1p7d1.4 |
|
| 5 |
|
aks4d1p7d1.5 |
|
| 6 |
|
simp2 |
|
| 7 |
1 2 3 4
|
aks4d1p4 |
|
| 8 |
7
|
simpld |
|
| 9 |
|
elfznn |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
6 11
|
pccld |
|
| 13 |
12
|
3expa |
|
| 14 |
13
|
nn0red |
|
| 15 |
|
2re |
|
| 16 |
15
|
a1i |
|
| 17 |
|
2pos |
|
| 18 |
17
|
a1i |
|
| 19 |
3
|
a1i |
|
| 20 |
|
eluzelz |
|
| 21 |
1 20
|
syl |
|
| 22 |
21
|
zred |
|
| 23 |
|
0red |
|
| 24 |
|
3re |
|
| 25 |
24
|
a1i |
|
| 26 |
|
3pos |
|
| 27 |
26
|
a1i |
|
| 28 |
|
eluzle |
|
| 29 |
1 28
|
syl |
|
| 30 |
23 25 22 27 29
|
ltletrd |
|
| 31 |
|
1red |
|
| 32 |
|
1lt2 |
|
| 33 |
32
|
a1i |
|
| 34 |
31 33
|
ltned |
|
| 35 |
34
|
necomd |
|
| 36 |
16 18 22 30 35
|
relogbcld |
|
| 37 |
|
5nn0 |
|
| 38 |
37
|
a1i |
|
| 39 |
36 38
|
reexpcld |
|
| 40 |
|
ceilcl |
|
| 41 |
39 40
|
syl |
|
| 42 |
41
|
zred |
|
| 43 |
19 42
|
eqeltrd |
|
| 44 |
|
9re |
|
| 45 |
44
|
a1i |
|
| 46 |
|
9pos |
|
| 47 |
46
|
a1i |
|
| 48 |
22 29
|
3lexlogpow5ineq4 |
|
| 49 |
23 45 39 47 48
|
lttrd |
|
| 50 |
|
ceilge |
|
| 51 |
39 50
|
syl |
|
| 52 |
23 39 42 49 51
|
ltletrd |
|
| 53 |
52 19
|
breqtrrd |
|
| 54 |
16 18 43 53 35
|
relogbcld |
|
| 55 |
54
|
flcld |
|
| 56 |
55
|
zred |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
|
simplr |
|
| 59 |
21 30
|
jca |
|
| 60 |
|
elnnz |
|
| 61 |
59 60
|
sylibr |
|
| 62 |
61
|
ad2antrr |
|
| 63 |
|
1cnd |
|
| 64 |
63
|
addlidd |
|
| 65 |
16
|
recnd |
|
| 66 |
23 18
|
gtned |
|
| 67 |
|
logbid1 |
|
| 68 |
65 66 35 67
|
syl3anc |
|
| 69 |
68
|
eqcomd |
|
| 70 |
64 69
|
eqtrd |
|
| 71 |
|
2z |
|
| 72 |
71
|
a1i |
|
| 73 |
16
|
leidd |
|
| 74 |
|
2lt9 |
|
| 75 |
74
|
a1i |
|
| 76 |
16 45 75
|
ltled |
|
| 77 |
45 39 42 48 51
|
ltletrd |
|
| 78 |
77 19
|
breqtrrd |
|
| 79 |
45 43 78
|
ltled |
|
| 80 |
16 45 43 76 79
|
letrd |
|
| 81 |
72 73 16 18 43 53 80
|
logblebd |
|
| 82 |
70 81
|
eqbrtrd |
|
| 83 |
|
0zd |
|
| 84 |
83
|
peano2zd |
|
| 85 |
|
flge |
|
| 86 |
54 84 85
|
syl2anc |
|
| 87 |
82 86
|
mpbid |
|
| 88 |
83 55
|
zltp1led |
|
| 89 |
87 88
|
mpbird |
|
| 90 |
55 89
|
jca |
|
| 91 |
|
elnnz |
|
| 92 |
90 91
|
sylibr |
|
| 93 |
92
|
nnnn0d |
|
| 94 |
93
|
ad2antrr |
|
| 95 |
62 94
|
nnexpcld |
|
| 96 |
58 95
|
pccld |
|
| 97 |
96
|
nn0red |
|
| 98 |
1
|
3ad2ant1 |
|
| 99 |
|
simp3 |
|
| 100 |
|
eqid |
|
| 101 |
98 2 3 4 6 99 100
|
aks4d1p6 |
|
| 102 |
101
|
3expa |
|
| 103 |
58 62
|
pccld |
|
| 104 |
103
|
nn0red |
|
| 105 |
23 56 89
|
ltled |
|
| 106 |
105
|
adantr |
|
| 107 |
106
|
adantr |
|
| 108 |
|
rsp |
|
| 109 |
5 108
|
syl |
|
| 110 |
109
|
imp |
|
| 111 |
110
|
imp |
|
| 112 |
61
|
adantr |
|
| 113 |
112
|
adantr |
|
| 114 |
|
pcelnn |
|
| 115 |
58 113 114
|
syl2anc |
|
| 116 |
111 115
|
mpbird |
|
| 117 |
|
nnge1 |
|
| 118 |
116 117
|
syl |
|
| 119 |
57 104 107 118
|
lemulge11d |
|
| 120 |
|
zq |
|
| 121 |
21 120
|
syl |
|
| 122 |
61
|
nnne0d |
|
| 123 |
121 122
|
jca |
|
| 124 |
123
|
adantr |
|
| 125 |
124
|
adantr |
|
| 126 |
55
|
adantr |
|
| 127 |
126
|
adantr |
|
| 128 |
|
pcexp |
|
| 129 |
58 125 127 128
|
syl3anc |
|
| 130 |
119 129
|
breqtrrd |
|
| 131 |
14 57 97 102 130
|
letrd |
|
| 132 |
|
simpr |
|
| 133 |
|
simplr |
|
| 134 |
10
|
adantr |
|
| 135 |
134
|
adantr |
|
| 136 |
|
pceq0 |
|
| 137 |
133 135 136
|
syl2anc |
|
| 138 |
132 137
|
mpbird |
|
| 139 |
112
|
adantr |
|
| 140 |
93
|
adantr |
|
| 141 |
140
|
adantr |
|
| 142 |
139 141
|
nnexpcld |
|
| 143 |
133 142
|
pccld |
|
| 144 |
143
|
nn0ge0d |
|
| 145 |
138 144
|
eqbrtrd |
|
| 146 |
131 145
|
pm2.61dan |
|
| 147 |
146
|
ralrimiva |
|
| 148 |
8
|
elfzelzd |
|
| 149 |
21 93
|
zexpcld |
|
| 150 |
|
pc2dvds |
|
| 151 |
148 149 150
|
syl2anc |
|
| 152 |
147 151
|
mpbird |
|