Metamath Proof Explorer


Theorem aks4d1p7

Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024)

Ref Expression
Hypotheses aks4d1p7.1 φ N 3
aks4d1p7.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p7.3 B = log 2 N 5
aks4d1p7.4 R = sup r 1 B | ¬ r A <
Assertion aks4d1p7 φ p p R ¬ p N

Proof

Step Hyp Ref Expression
1 aks4d1p7.1 φ N 3
2 aks4d1p7.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p7.3 B = log 2 N 5
4 aks4d1p7.4 R = sup r 1 B | ¬ r A <
5 1 adantr φ p p R p N N 3
6 breq1 p = q p R q R
7 breq1 p = q p N q N
8 6 7 imbi12d p = q p R p N q R q N
9 8 cbvralvw p p R p N q q R q N
10 9 biimpi p p R p N q q R q N
11 10 adantl φ p p R p N q q R q N
12 5 2 3 4 11 aks4d1p7d1 φ p p R p N R N log 2 B
13 4 a1i φ R = sup r 1 B | ¬ r A <
14 ltso < Or
15 14 a1i φ < Or
16 fzfid φ 1 B Fin
17 ssrab2 r 1 B | ¬ r A 1 B
18 17 a1i φ r 1 B | ¬ r A 1 B
19 16 18 ssfid φ r 1 B | ¬ r A Fin
20 1 2 3 aks4d1p3 φ r 1 B ¬ r A
21 rabn0 r 1 B | ¬ r A r 1 B ¬ r A
22 20 21 sylibr φ r 1 B | ¬ r A
23 elfznn o 1 B o
24 23 adantl φ o 1 B o
25 24 nnred φ o 1 B o
26 25 ex φ o 1 B o
27 26 ssrdv φ 1 B
28 18 27 sstrd φ r 1 B | ¬ r A
29 19 22 28 3jca φ r 1 B | ¬ r A Fin r 1 B | ¬ r A r 1 B | ¬ r A
30 fiinfcl < Or r 1 B | ¬ r A Fin r 1 B | ¬ r A r 1 B | ¬ r A sup r 1 B | ¬ r A < r 1 B | ¬ r A
31 15 29 30 syl2anc φ sup r 1 B | ¬ r A < r 1 B | ¬ r A
32 13 31 eqeltrd φ R r 1 B | ¬ r A
33 breq1 r = R r A R A
34 33 notbid r = R ¬ r A ¬ R A
35 34 elrab R r 1 B | ¬ r A R 1 B ¬ R A
36 32 35 sylib φ R 1 B ¬ R A
37 36 simprd φ ¬ R A
38 1 2 3 4 aks4d1p4 φ R 1 B ¬ R A
39 38 simpld φ R 1 B
40 39 elfzelzd φ R
41 eluzelz N 3 N
42 1 41 syl φ N
43 2re 2
44 43 a1i φ 2
45 2pos 0 < 2
46 45 a1i φ 0 < 2
47 3 a1i φ B = log 2 N 5
48 42 zred φ N
49 0red φ 0
50 3re 3
51 50 a1i φ 3
52 3pos 0 < 3
53 52 a1i φ 0 < 3
54 eluzle N 3 3 N
55 1 54 syl φ 3 N
56 49 51 48 53 55 ltletrd φ 0 < N
57 1red φ 1
58 1lt2 1 < 2
59 58 a1i φ 1 < 2
60 57 59 ltned φ 1 2
61 60 necomd φ 2 1
62 44 46 48 56 61 relogbcld φ log 2 N
63 5nn0 5 0
64 63 a1i φ 5 0
65 62 64 reexpcld φ log 2 N 5
66 65 ceilcld φ log 2 N 5
67 66 zred φ log 2 N 5
68 47 67 eqeltrd φ B
69 9re 9
70 69 a1i φ 9
71 9pos 0 < 9
72 71 a1i φ 0 < 9
73 48 55 3lexlogpow5ineq4 φ 9 < log 2 N 5
74 65 ceilged φ log 2 N 5 log 2 N 5
75 70 65 67 73 74 ltletrd φ 9 < log 2 N 5
76 75 47 breqtrrd φ 9 < B
77 49 70 68 72 76 lttrd φ 0 < B
78 44 46 68 77 61 relogbcld φ log 2 B
79 78 flcld φ log 2 B
80 44 recnd φ 2
81 49 46 gtned φ 2 0
82 logb1 2 2 0 2 1 log 2 1 = 0
83 80 81 61 82 syl3anc φ log 2 1 = 0
84 83 eqcomd φ 0 = log 2 1
85 2z 2
86 85 a1i φ 2
87 44 leidd φ 2 2
88 0lt1 0 < 1
89 88 a1i φ 0 < 1
90 1lt9 1 < 9
91 90 a1i φ 1 < 9
92 57 70 91 ltled φ 1 9
93 70 68 76 ltled φ 9 B
94 57 70 68 92 93 letrd φ 1 B
95 86 87 57 89 68 77 94 logblebd φ log 2 1 log 2 B
96 84 95 eqbrtrd φ 0 log 2 B
97 0zd φ 0
98 flge log 2 B 0 0 log 2 B 0 log 2 B
99 78 97 98 syl2anc φ 0 log 2 B 0 log 2 B
100 96 99 mpbid φ 0 log 2 B
101 79 100 jca φ log 2 B 0 log 2 B
102 elnn0z log 2 B 0 log 2 B 0 log 2 B
103 101 102 sylibr φ log 2 B 0
104 42 103 zexpcld φ N log 2 B
105 fzfid φ 1 log 2 N 2 Fin
106 42 adantr φ k 1 log 2 N 2 N
107 elfznn k 1 log 2 N 2 k
108 107 adantl φ k 1 log 2 N 2 k
109 108 nnnn0d φ k 1 log 2 N 2 k 0
110 106 109 zexpcld φ k 1 log 2 N 2 N k
111 1zzd φ k 1 log 2 N 2 1
112 110 111 zsubcld φ k 1 log 2 N 2 N k 1
113 105 112 fprodzcl φ k = 1 log 2 N 2 N k 1
114 dvdsmultr1 R N log 2 B k = 1 log 2 N 2 N k 1 R N log 2 B R N log 2 B k = 1 log 2 N 2 N k 1
115 40 104 113 114 syl3anc φ R N log 2 B R N log 2 B k = 1 log 2 N 2 N k 1
116 115 imp φ R N log 2 B R N log 2 B k = 1 log 2 N 2 N k 1
117 2 a1i φ A = N log 2 B k = 1 log 2 N 2 N k 1
118 117 breq2d φ R A R N log 2 B k = 1 log 2 N 2 N k 1
119 118 adantr φ R N log 2 B R A R N log 2 B k = 1 log 2 N 2 N k 1
120 116 119 mpbird φ R N log 2 B R A
121 120 ex φ R N log 2 B R A
122 121 con3d φ ¬ R A ¬ R N log 2 B
123 37 122 mpd φ ¬ R N log 2 B
124 123 adantr φ p p R p N ¬ R N log 2 B
125 12 124 pm2.65da φ ¬ p p R p N
126 ianor ¬ p R ¬ p N ¬ p R ¬ ¬ p N
127 notnotb p N ¬ ¬ p N
128 127 orbi2i ¬ p R p N ¬ p R ¬ ¬ p N
129 128 bicomi ¬ p R ¬ ¬ p N ¬ p R p N
130 126 129 bitri ¬ p R ¬ p N ¬ p R p N
131 df-or ¬ p R p N ¬ ¬ p R p N
132 130 131 bitri ¬ p R ¬ p N ¬ ¬ p R p N
133 notnotb p R ¬ ¬ p R
134 133 imbi1i p R p N ¬ ¬ p R p N
135 134 bicomi ¬ ¬ p R p N p R p N
136 132 135 bitri ¬ p R ¬ p N p R p N
137 136 ralbii p ¬ p R ¬ p N p p R p N
138 137 notbii ¬ p ¬ p R ¬ p N ¬ p p R p N
139 125 138 sylibr φ ¬ p ¬ p R ¬ p N
140 ralnex p ¬ p R ¬ p N ¬ p p R ¬ p N
141 140 con2bii p p R ¬ p N ¬ p ¬ p R ¬ p N
142 141 bicomi ¬ p ¬ p R ¬ p N p p R ¬ p N
143 139 142 sylib φ p p R ¬ p N