Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p7.1 |
|
2 |
|
aks4d1p7.2 |
|
3 |
|
aks4d1p7.3 |
|
4 |
|
aks4d1p7.4 |
|
5 |
1
|
adantr |
|
6 |
|
breq1 |
|
7 |
|
breq1 |
|
8 |
6 7
|
imbi12d |
|
9 |
8
|
cbvralvw |
|
10 |
9
|
biimpi |
|
11 |
10
|
adantl |
|
12 |
5 2 3 4 11
|
aks4d1p7d1 |
|
13 |
4
|
a1i |
|
14 |
|
ltso |
|
15 |
14
|
a1i |
|
16 |
|
fzfid |
|
17 |
|
ssrab2 |
|
18 |
17
|
a1i |
|
19 |
16 18
|
ssfid |
|
20 |
1 2 3
|
aks4d1p3 |
|
21 |
|
rabn0 |
|
22 |
20 21
|
sylibr |
|
23 |
|
elfznn |
|
24 |
23
|
adantl |
|
25 |
24
|
nnred |
|
26 |
25
|
ex |
|
27 |
26
|
ssrdv |
|
28 |
18 27
|
sstrd |
|
29 |
19 22 28
|
3jca |
|
30 |
|
fiinfcl |
|
31 |
15 29 30
|
syl2anc |
|
32 |
13 31
|
eqeltrd |
|
33 |
|
breq1 |
|
34 |
33
|
notbid |
|
35 |
34
|
elrab |
|
36 |
32 35
|
sylib |
|
37 |
36
|
simprd |
|
38 |
1 2 3 4
|
aks4d1p4 |
|
39 |
38
|
simpld |
|
40 |
39
|
elfzelzd |
|
41 |
|
eluzelz |
|
42 |
1 41
|
syl |
|
43 |
|
2re |
|
44 |
43
|
a1i |
|
45 |
|
2pos |
|
46 |
45
|
a1i |
|
47 |
3
|
a1i |
|
48 |
42
|
zred |
|
49 |
|
0red |
|
50 |
|
3re |
|
51 |
50
|
a1i |
|
52 |
|
3pos |
|
53 |
52
|
a1i |
|
54 |
|
eluzle |
|
55 |
1 54
|
syl |
|
56 |
49 51 48 53 55
|
ltletrd |
|
57 |
|
1red |
|
58 |
|
1lt2 |
|
59 |
58
|
a1i |
|
60 |
57 59
|
ltned |
|
61 |
60
|
necomd |
|
62 |
44 46 48 56 61
|
relogbcld |
|
63 |
|
5nn0 |
|
64 |
63
|
a1i |
|
65 |
62 64
|
reexpcld |
|
66 |
65
|
ceilcld |
|
67 |
66
|
zred |
|
68 |
47 67
|
eqeltrd |
|
69 |
|
9re |
|
70 |
69
|
a1i |
|
71 |
|
9pos |
|
72 |
71
|
a1i |
|
73 |
48 55
|
3lexlogpow5ineq4 |
|
74 |
65
|
ceilged |
|
75 |
70 65 67 73 74
|
ltletrd |
|
76 |
75 47
|
breqtrrd |
|
77 |
49 70 68 72 76
|
lttrd |
|
78 |
44 46 68 77 61
|
relogbcld |
|
79 |
78
|
flcld |
|
80 |
44
|
recnd |
|
81 |
49 46
|
gtned |
|
82 |
|
logb1 |
|
83 |
80 81 61 82
|
syl3anc |
|
84 |
83
|
eqcomd |
|
85 |
|
2z |
|
86 |
85
|
a1i |
|
87 |
44
|
leidd |
|
88 |
|
0lt1 |
|
89 |
88
|
a1i |
|
90 |
|
1lt9 |
|
91 |
90
|
a1i |
|
92 |
57 70 91
|
ltled |
|
93 |
70 68 76
|
ltled |
|
94 |
57 70 68 92 93
|
letrd |
|
95 |
86 87 57 89 68 77 94
|
logblebd |
|
96 |
84 95
|
eqbrtrd |
|
97 |
|
0zd |
|
98 |
|
flge |
|
99 |
78 97 98
|
syl2anc |
|
100 |
96 99
|
mpbid |
|
101 |
79 100
|
jca |
|
102 |
|
elnn0z |
|
103 |
101 102
|
sylibr |
|
104 |
42 103
|
zexpcld |
|
105 |
|
fzfid |
|
106 |
42
|
adantr |
|
107 |
|
elfznn |
|
108 |
107
|
adantl |
|
109 |
108
|
nnnn0d |
|
110 |
106 109
|
zexpcld |
|
111 |
|
1zzd |
|
112 |
110 111
|
zsubcld |
|
113 |
105 112
|
fprodzcl |
|
114 |
|
dvdsmultr1 |
|
115 |
40 104 113 114
|
syl3anc |
|
116 |
115
|
imp |
|
117 |
2
|
a1i |
|
118 |
117
|
breq2d |
|
119 |
118
|
adantr |
|
120 |
116 119
|
mpbird |
|
121 |
120
|
ex |
|
122 |
121
|
con3d |
|
123 |
37 122
|
mpd |
|
124 |
123
|
adantr |
|
125 |
12 124
|
pm2.65da |
|
126 |
|
ianor |
|
127 |
|
notnotb |
|
128 |
127
|
orbi2i |
|
129 |
128
|
bicomi |
|
130 |
126 129
|
bitri |
|
131 |
|
df-or |
|
132 |
130 131
|
bitri |
|
133 |
|
notnotb |
|
134 |
133
|
imbi1i |
|
135 |
134
|
bicomi |
|
136 |
132 135
|
bitri |
|
137 |
136
|
ralbii |
|
138 |
137
|
notbii |
|
139 |
125 138
|
sylibr |
|
140 |
|
ralnex |
|
141 |
140
|
con2bii |
|
142 |
141
|
bicomi |
|
143 |
139 142
|
sylib |
|