| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p7.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 2 |
|
aks4d1p7.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
| 3 |
|
aks4d1p7.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 4 |
|
aks4d1p7.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
| 6 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑅 ↔ 𝑞 ∥ 𝑅 ) ) |
| 7 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) ) |
| 9 |
8
|
cbvralvw |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) |
| 10 |
9
|
biimpi |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) |
| 12 |
5 2 3 4 11
|
aks4d1p7d1 |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 13 |
4
|
a1i |
⊢ ( 𝜑 → 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ) |
| 14 |
|
ltso |
⊢ < Or ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 16 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ∈ Fin ) |
| 17 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) ) |
| 19 |
16 18
|
ssfid |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ) |
| 20 |
1 2 3
|
aks4d1p3 |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
| 21 |
|
rabn0 |
⊢ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ↔ ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
| 22 |
20 21
|
sylibr |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ) |
| 23 |
|
elfznn |
⊢ ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℕ ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℕ ) |
| 25 |
24
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℝ ) |
| 26 |
25
|
ex |
⊢ ( 𝜑 → ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℝ ) ) |
| 27 |
26
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ⊆ ℝ ) |
| 28 |
18 27
|
sstrd |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) |
| 29 |
19 22 28
|
3jca |
⊢ ( 𝜑 → ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) ) |
| 30 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) ) → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 31 |
15 29 30
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 32 |
13 31
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
| 33 |
|
breq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∥ 𝐴 ↔ 𝑅 ∥ 𝐴 ) ) |
| 34 |
33
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑟 ∥ 𝐴 ↔ ¬ 𝑅 ∥ 𝐴 ) ) |
| 35 |
34
|
elrab |
⊢ ( 𝑅 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ↔ ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 36 |
32 35
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 37 |
36
|
simprd |
⊢ ( 𝜑 → ¬ 𝑅 ∥ 𝐴 ) |
| 38 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
| 39 |
38
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
| 40 |
39
|
elfzelzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
| 41 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
| 42 |
1 41
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 43 |
|
2re |
⊢ 2 ∈ ℝ |
| 44 |
43
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 45 |
|
2pos |
⊢ 0 < 2 |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 47 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 48 |
42
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 49 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 50 |
|
3re |
⊢ 3 ∈ ℝ |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
| 52 |
|
3pos |
⊢ 0 < 3 |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
| 54 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
| 55 |
1 54
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
| 56 |
49 51 48 53 55
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 57 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 58 |
|
1lt2 |
⊢ 1 < 2 |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 60 |
57 59
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 61 |
60
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
| 62 |
44 46 48 56 61
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
| 63 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
| 65 |
62 64
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
| 66 |
65
|
ceilcld |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
| 67 |
66
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
| 68 |
47 67
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 69 |
|
9re |
⊢ 9 ∈ ℝ |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
| 71 |
|
9pos |
⊢ 0 < 9 |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
| 73 |
48 55
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
| 74 |
65
|
ceilged |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 75 |
70 65 67 73 74
|
ltletrd |
⊢ ( 𝜑 → 9 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
| 76 |
75 47
|
breqtrrd |
⊢ ( 𝜑 → 9 < 𝐵 ) |
| 77 |
49 70 68 72 76
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 78 |
44 46 68 77 61
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
| 79 |
78
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
| 80 |
44
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 81 |
49 46
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 82 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
| 83 |
80 81 61 82
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 1 ) = 0 ) |
| 84 |
83
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 2 logb 1 ) ) |
| 85 |
|
2z |
⊢ 2 ∈ ℤ |
| 86 |
85
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 87 |
44
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
| 88 |
|
0lt1 |
⊢ 0 < 1 |
| 89 |
88
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 90 |
|
1lt9 |
⊢ 1 < 9 |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → 1 < 9 ) |
| 92 |
57 70 91
|
ltled |
⊢ ( 𝜑 → 1 ≤ 9 ) |
| 93 |
70 68 76
|
ltled |
⊢ ( 𝜑 → 9 ≤ 𝐵 ) |
| 94 |
57 70 68 92 93
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝐵 ) |
| 95 |
86 87 57 89 68 77 94
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 1 ) ≤ ( 2 logb 𝐵 ) ) |
| 96 |
84 95
|
eqbrtrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝐵 ) ) |
| 97 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 98 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 99 |
78 97 98
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 100 |
96 99
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
| 101 |
79 100
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 102 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 103 |
101 102
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
| 104 |
42 103
|
zexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) |
| 105 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∈ Fin ) |
| 106 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 107 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ℕ ) |
| 108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 109 |
108
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 110 |
106 109
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
| 111 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
| 112 |
110 111
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 113 |
105 112
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 114 |
|
dvdsmultr1 |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ∧ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
| 115 |
40 104 113 114
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
| 116 |
115
|
imp |
⊢ ( ( 𝜑 ∧ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 117 |
2
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
| 118 |
117
|
breq2d |
⊢ ( 𝜑 → ( 𝑅 ∥ 𝐴 ↔ 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) → ( 𝑅 ∥ 𝐴 ↔ 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
| 120 |
116 119
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) → 𝑅 ∥ 𝐴 ) |
| 121 |
120
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) → 𝑅 ∥ 𝐴 ) ) |
| 122 |
121
|
con3d |
⊢ ( 𝜑 → ( ¬ 𝑅 ∥ 𝐴 → ¬ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
| 123 |
37 122
|
mpd |
⊢ ( 𝜑 → ¬ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → ¬ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
| 125 |
12 124
|
pm2.65da |
⊢ ( 𝜑 → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 126 |
|
ianor |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁 ) ) |
| 127 |
|
notnotb |
⊢ ( 𝑝 ∥ 𝑁 ↔ ¬ ¬ 𝑝 ∥ 𝑁 ) |
| 128 |
127
|
orbi2i |
⊢ ( ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁 ) ) |
| 129 |
128
|
bicomi |
⊢ ( ( ¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ) |
| 130 |
126 129
|
bitri |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ) |
| 131 |
|
df-or |
⊢ ( ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ↔ ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 132 |
130 131
|
bitri |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 133 |
|
notnotb |
⊢ ( 𝑝 ∥ 𝑅 ↔ ¬ ¬ 𝑝 ∥ 𝑅 ) |
| 134 |
133
|
imbi1i |
⊢ ( ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 135 |
134
|
bicomi |
⊢ ( ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 136 |
132 135
|
bitri |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 137 |
136
|
ralbii |
⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 138 |
137
|
notbii |
⊢ ( ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
| 139 |
125 138
|
sylibr |
⊢ ( 𝜑 → ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
| 140 |
|
ralnex |
⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
| 141 |
140
|
con2bii |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
| 142 |
141
|
bicomi |
⊢ ( ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
| 143 |
139 142
|
sylib |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |