Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p7.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
2 |
|
aks4d1p7.2 |
⊢ 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) |
3 |
|
aks4d1p7.3 |
⊢ 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
4 |
|
aks4d1p7.4 |
⊢ 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 3 ) ) |
6 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑅 ↔ 𝑞 ∥ 𝑅 ) ) |
7 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁 ) ) |
8 |
6 7
|
imbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) ) |
9 |
8
|
cbvralvw |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) |
10 |
9
|
biimpi |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → ∀ 𝑞 ∈ ℙ ( 𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁 ) ) |
12 |
5 2 3 4 11
|
aks4d1p7d1 |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
13 |
4
|
a1i |
⊢ ( 𝜑 → 𝑅 = inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ) |
14 |
|
ltso |
⊢ < Or ℝ |
15 |
14
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
16 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ∈ Fin ) |
17 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ( 1 ... 𝐵 ) ) |
19 |
16 18
|
ssfid |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ) |
20 |
1 2 3
|
aks4d1p3 |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
21 |
|
rabn0 |
⊢ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ↔ ∃ 𝑟 ∈ ( 1 ... 𝐵 ) ¬ 𝑟 ∥ 𝐴 ) |
22 |
20 21
|
sylibr |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ) |
23 |
|
elfznn |
⊢ ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℕ ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℕ ) |
25 |
24
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑜 ∈ ( 1 ... 𝐵 ) ) → 𝑜 ∈ ℝ ) |
26 |
25
|
ex |
⊢ ( 𝜑 → ( 𝑜 ∈ ( 1 ... 𝐵 ) → 𝑜 ∈ ℝ ) ) |
27 |
26
|
ssrdv |
⊢ ( 𝜑 → ( 1 ... 𝐵 ) ⊆ ℝ ) |
28 |
18 27
|
sstrd |
⊢ ( 𝜑 → { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) |
29 |
19 22 28
|
3jca |
⊢ ( 𝜑 → ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) ) |
30 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ∈ Fin ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ≠ ∅ ∧ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ⊆ ℝ ) ) → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
31 |
15 29 30
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } , ℝ , < ) ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
32 |
13 31
|
eqeltrd |
⊢ ( 𝜑 → 𝑅 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ) |
33 |
|
breq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∥ 𝐴 ↔ 𝑅 ∥ 𝐴 ) ) |
34 |
33
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑟 ∥ 𝐴 ↔ ¬ 𝑅 ∥ 𝐴 ) ) |
35 |
34
|
elrab |
⊢ ( 𝑅 ∈ { 𝑟 ∈ ( 1 ... 𝐵 ) ∣ ¬ 𝑟 ∥ 𝐴 } ↔ ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
36 |
32 35
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
37 |
36
|
simprd |
⊢ ( 𝜑 → ¬ 𝑅 ∥ 𝐴 ) |
38 |
1 2 3 4
|
aks4d1p4 |
⊢ ( 𝜑 → ( 𝑅 ∈ ( 1 ... 𝐵 ) ∧ ¬ 𝑅 ∥ 𝐴 ) ) |
39 |
38
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ( 1 ... 𝐵 ) ) |
40 |
39
|
elfzelzd |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
41 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℤ ) |
42 |
1 41
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
43 |
|
2re |
⊢ 2 ∈ ℝ |
44 |
43
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
45 |
|
2pos |
⊢ 0 < 2 |
46 |
45
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
47 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
48 |
42
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
49 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
50 |
|
3re |
⊢ 3 ∈ ℝ |
51 |
50
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℝ ) |
52 |
|
3pos |
⊢ 0 < 3 |
53 |
52
|
a1i |
⊢ ( 𝜑 → 0 < 3 ) |
54 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑁 ) |
55 |
1 54
|
syl |
⊢ ( 𝜑 → 3 ≤ 𝑁 ) |
56 |
49 51 48 53 55
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑁 ) |
57 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
58 |
|
1lt2 |
⊢ 1 < 2 |
59 |
58
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
60 |
57 59
|
ltned |
⊢ ( 𝜑 → 1 ≠ 2 ) |
61 |
60
|
necomd |
⊢ ( 𝜑 → 2 ≠ 1 ) |
62 |
44 46 48 56 61
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝑁 ) ∈ ℝ ) |
63 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
64 |
63
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℕ0 ) |
65 |
62 64
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ∈ ℝ ) |
66 |
65
|
ceilcld |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℤ ) |
67 |
66
|
zred |
⊢ ( 𝜑 → ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ∈ ℝ ) |
68 |
47 67
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
69 |
|
9re |
⊢ 9 ∈ ℝ |
70 |
69
|
a1i |
⊢ ( 𝜑 → 9 ∈ ℝ ) |
71 |
|
9pos |
⊢ 0 < 9 |
72 |
71
|
a1i |
⊢ ( 𝜑 → 0 < 9 ) |
73 |
48 55
|
3lexlogpow5ineq4 |
⊢ ( 𝜑 → 9 < ( ( 2 logb 𝑁 ) ↑ 5 ) ) |
74 |
65
|
ceilged |
⊢ ( 𝜑 → ( ( 2 logb 𝑁 ) ↑ 5 ) ≤ ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
75 |
70 65 67 73 74
|
ltletrd |
⊢ ( 𝜑 → 9 < ( ⌈ ‘ ( ( 2 logb 𝑁 ) ↑ 5 ) ) ) |
76 |
75 47
|
breqtrrd |
⊢ ( 𝜑 → 9 < 𝐵 ) |
77 |
49 70 68 72 76
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
78 |
44 46 68 77 61
|
relogbcld |
⊢ ( 𝜑 → ( 2 logb 𝐵 ) ∈ ℝ ) |
79 |
78
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ) |
80 |
44
|
recnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
81 |
49 46
|
gtned |
⊢ ( 𝜑 → 2 ≠ 0 ) |
82 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
83 |
80 81 61 82
|
syl3anc |
⊢ ( 𝜑 → ( 2 logb 1 ) = 0 ) |
84 |
83
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 2 logb 1 ) ) |
85 |
|
2z |
⊢ 2 ∈ ℤ |
86 |
85
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
87 |
44
|
leidd |
⊢ ( 𝜑 → 2 ≤ 2 ) |
88 |
|
0lt1 |
⊢ 0 < 1 |
89 |
88
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
90 |
|
1lt9 |
⊢ 1 < 9 |
91 |
90
|
a1i |
⊢ ( 𝜑 → 1 < 9 ) |
92 |
57 70 91
|
ltled |
⊢ ( 𝜑 → 1 ≤ 9 ) |
93 |
70 68 76
|
ltled |
⊢ ( 𝜑 → 9 ≤ 𝐵 ) |
94 |
57 70 68 92 93
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝐵 ) |
95 |
86 87 57 89 68 77 94
|
logblebd |
⊢ ( 𝜑 → ( 2 logb 1 ) ≤ ( 2 logb 𝐵 ) ) |
96 |
84 95
|
eqbrtrd |
⊢ ( 𝜑 → 0 ≤ ( 2 logb 𝐵 ) ) |
97 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
98 |
|
flge |
⊢ ( ( ( 2 logb 𝐵 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
99 |
78 97 98
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 2 logb 𝐵 ) ↔ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
100 |
96 99
|
mpbid |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) |
101 |
79 100
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
102 |
|
elnn0z |
⊢ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ↔ ( ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℤ ∧ 0 ≤ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
103 |
101 102
|
sylibr |
⊢ ( 𝜑 → ( ⌊ ‘ ( 2 logb 𝐵 ) ) ∈ ℕ0 ) |
104 |
42 103
|
zexpcld |
⊢ ( 𝜑 → ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ) |
105 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ∈ Fin ) |
106 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑁 ∈ ℤ ) |
107 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) → 𝑘 ∈ ℕ ) |
108 |
107
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
109 |
108
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
110 |
106 109
|
zexpcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( 𝑁 ↑ 𝑘 ) ∈ ℤ ) |
111 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → 1 ∈ ℤ ) |
112 |
110 111
|
zsubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ) → ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
113 |
105 112
|
fprodzcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
114 |
|
dvdsmultr1 |
⊢ ( ( 𝑅 ∈ ℤ ∧ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ∈ ℤ ∧ ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ∈ ℤ ) → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
115 |
40 104 113 114
|
syl3anc |
⊢ ( 𝜑 → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
116 |
115
|
imp |
⊢ ( ( 𝜑 ∧ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) → 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
117 |
2
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) |
118 |
117
|
breq2d |
⊢ ( 𝜑 → ( 𝑅 ∥ 𝐴 ↔ 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) → ( 𝑅 ∥ 𝐴 ↔ 𝑅 ∥ ( ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) · ∏ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( 2 logb 𝑁 ) ↑ 2 ) ) ) ( ( 𝑁 ↑ 𝑘 ) − 1 ) ) ) ) |
120 |
116 119
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) → 𝑅 ∥ 𝐴 ) |
121 |
120
|
ex |
⊢ ( 𝜑 → ( 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) → 𝑅 ∥ 𝐴 ) ) |
122 |
121
|
con3d |
⊢ ( 𝜑 → ( ¬ 𝑅 ∥ 𝐴 → ¬ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) ) |
123 |
37 122
|
mpd |
⊢ ( 𝜑 → ¬ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) → ¬ 𝑅 ∥ ( 𝑁 ↑ ( ⌊ ‘ ( 2 logb 𝐵 ) ) ) ) |
125 |
12 124
|
pm2.65da |
⊢ ( 𝜑 → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
126 |
|
ianor |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁 ) ) |
127 |
|
notnotb |
⊢ ( 𝑝 ∥ 𝑁 ↔ ¬ ¬ 𝑝 ∥ 𝑁 ) |
128 |
127
|
orbi2i |
⊢ ( ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁 ) ) |
129 |
128
|
bicomi |
⊢ ( ( ¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ) |
130 |
126 129
|
bitri |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ) |
131 |
|
df-or |
⊢ ( ( ¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁 ) ↔ ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
132 |
130 131
|
bitri |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
133 |
|
notnotb |
⊢ ( 𝑝 ∥ 𝑅 ↔ ¬ ¬ 𝑝 ∥ 𝑅 ) |
134 |
133
|
imbi1i |
⊢ ( ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
135 |
134
|
bicomi |
⊢ ( ( ¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ↔ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
136 |
132 135
|
bitri |
⊢ ( ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
137 |
136
|
ralbii |
⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
138 |
137
|
notbii |
⊢ ( ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁 ) ) |
139 |
125 138
|
sylibr |
⊢ ( 𝜑 → ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
140 |
|
ralnex |
⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
141 |
140
|
con2bii |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
142 |
141
|
bicomi |
⊢ ( ¬ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |
143 |
139 142
|
sylib |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ℙ ( 𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁 ) ) |