| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p6.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1p6.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 3 |
|
aks4d1p6.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 4 |
|
aks4d1p6.4 |
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) |
| 5 |
|
aks4d1p6.5 |
|- ( ph -> P e. Prime ) |
| 6 |
|
aks4d1p6.6 |
|- ( ph -> P || R ) |
| 7 |
|
aks4d1p6.7 |
|- K = ( P pCnt R ) |
| 8 |
7
|
a1i |
|- ( ph -> K = ( P pCnt R ) ) |
| 9 |
1 2 3 4
|
aks4d1p4 |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
| 10 |
9
|
simpld |
|- ( ph -> R e. ( 1 ... B ) ) |
| 11 |
|
elfznn |
|- ( R e. ( 1 ... B ) -> R e. NN ) |
| 12 |
10 11
|
syl |
|- ( ph -> R e. NN ) |
| 13 |
5 12
|
pccld |
|- ( ph -> ( P pCnt R ) e. NN0 ) |
| 14 |
8 13
|
eqeltrd |
|- ( ph -> K e. NN0 ) |
| 15 |
14
|
nn0zd |
|- ( ph -> K e. ZZ ) |
| 16 |
15
|
zred |
|- ( ph -> K e. RR ) |
| 17 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 18 |
5 17
|
syl |
|- ( ph -> P e. NN ) |
| 19 |
18
|
nnred |
|- ( ph -> P e. RR ) |
| 20 |
18
|
nngt0d |
|- ( ph -> 0 < P ) |
| 21 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 22 |
|
2re |
|- 2 e. RR |
| 23 |
22
|
a1i |
|- ( ph -> 2 e. RR ) |
| 24 |
|
2pos |
|- 0 < 2 |
| 25 |
24
|
a1i |
|- ( ph -> 0 < 2 ) |
| 26 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 27 |
1 26
|
syl |
|- ( ph -> N e. ZZ ) |
| 28 |
27
|
zred |
|- ( ph -> N e. RR ) |
| 29 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 30 |
|
3re |
|- 3 e. RR |
| 31 |
30
|
a1i |
|- ( ph -> 3 e. RR ) |
| 32 |
|
3pos |
|- 0 < 3 |
| 33 |
32
|
a1i |
|- ( ph -> 0 < 3 ) |
| 34 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 35 |
1 34
|
syl |
|- ( ph -> 3 <_ N ) |
| 36 |
29 31 28 33 35
|
ltletrd |
|- ( ph -> 0 < N ) |
| 37 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 38 |
|
1lt2 |
|- 1 < 2 |
| 39 |
38
|
a1i |
|- ( ph -> 1 < 2 ) |
| 40 |
37 39
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 41 |
40
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 42 |
23 25 28 36 41
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 43 |
|
5nn0 |
|- 5 e. NN0 |
| 44 |
43
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 45 |
42 44
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
| 46 |
|
ceilcl |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 47 |
45 46
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 48 |
21 47
|
eqeltrd |
|- ( ph -> B e. ZZ ) |
| 49 |
48
|
zred |
|- ( ph -> B e. RR ) |
| 50 |
|
9re |
|- 9 e. RR |
| 51 |
50
|
a1i |
|- ( ph -> 9 e. RR ) |
| 52 |
|
9pos |
|- 0 < 9 |
| 53 |
52
|
a1i |
|- ( ph -> 0 < 9 ) |
| 54 |
28 35
|
3lexlogpow5ineq4 |
|- ( ph -> 9 < ( ( 2 logb N ) ^ 5 ) ) |
| 55 |
29 51 45 53 54
|
lttrd |
|- ( ph -> 0 < ( ( 2 logb N ) ^ 5 ) ) |
| 56 |
|
ceilge |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 57 |
45 56
|
syl |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 58 |
57 21
|
breqtrrd |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) <_ B ) |
| 59 |
29 45 49 55 58
|
ltletrd |
|- ( ph -> 0 < B ) |
| 60 |
48 59
|
jca |
|- ( ph -> ( B e. ZZ /\ 0 < B ) ) |
| 61 |
|
elnnz |
|- ( B e. NN <-> ( B e. ZZ /\ 0 < B ) ) |
| 62 |
60 61
|
sylibr |
|- ( ph -> B e. NN ) |
| 63 |
62
|
nnred |
|- ( ph -> B e. RR ) |
| 64 |
62
|
nngt0d |
|- ( ph -> 0 < B ) |
| 65 |
|
2z |
|- 2 e. ZZ |
| 66 |
65
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 67 |
66
|
zred |
|- ( ph -> 2 e. RR ) |
| 68 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 69 |
5 68
|
syl |
|- ( ph -> P e. ( ZZ>= ` 2 ) ) |
| 70 |
|
eluzle |
|- ( P e. ( ZZ>= ` 2 ) -> 2 <_ P ) |
| 71 |
69 70
|
syl |
|- ( ph -> 2 <_ P ) |
| 72 |
37 67 19 39 71
|
ltletrd |
|- ( ph -> 1 < P ) |
| 73 |
37 72
|
ltned |
|- ( ph -> 1 =/= P ) |
| 74 |
73
|
necomd |
|- ( ph -> P =/= 1 ) |
| 75 |
19 20 63 64 74
|
relogbcld |
|- ( ph -> ( P logb B ) e. RR ) |
| 76 |
67 25 63 64 41
|
relogbcld |
|- ( ph -> ( 2 logb B ) e. RR ) |
| 77 |
18
|
nnrpd |
|- ( ph -> P e. RR+ ) |
| 78 |
77
|
rpcnd |
|- ( ph -> P e. CC ) |
| 79 |
77
|
rpne0d |
|- ( ph -> P =/= 0 ) |
| 80 |
78 79 15
|
cxpexpzd |
|- ( ph -> ( P ^c K ) = ( P ^ K ) ) |
| 81 |
19 14
|
reexpcld |
|- ( ph -> ( P ^ K ) e. RR ) |
| 82 |
12
|
nnred |
|- ( ph -> R e. RR ) |
| 83 |
8
|
oveq2d |
|- ( ph -> ( P ^ K ) = ( P ^ ( P pCnt R ) ) ) |
| 84 |
|
pcdvds |
|- ( ( P e. Prime /\ R e. NN ) -> ( P ^ ( P pCnt R ) ) || R ) |
| 85 |
5 12 84
|
syl2anc |
|- ( ph -> ( P ^ ( P pCnt R ) ) || R ) |
| 86 |
18
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 87 |
|
zexpcl |
|- ( ( P e. ZZ /\ ( P pCnt R ) e. NN0 ) -> ( P ^ ( P pCnt R ) ) e. ZZ ) |
| 88 |
86 13 87
|
syl2anc |
|- ( ph -> ( P ^ ( P pCnt R ) ) e. ZZ ) |
| 89 |
|
dvdsle |
|- ( ( ( P ^ ( P pCnt R ) ) e. ZZ /\ R e. NN ) -> ( ( P ^ ( P pCnt R ) ) || R -> ( P ^ ( P pCnt R ) ) <_ R ) ) |
| 90 |
88 12 89
|
syl2anc |
|- ( ph -> ( ( P ^ ( P pCnt R ) ) || R -> ( P ^ ( P pCnt R ) ) <_ R ) ) |
| 91 |
85 90
|
mpd |
|- ( ph -> ( P ^ ( P pCnt R ) ) <_ R ) |
| 92 |
83 91
|
eqbrtrd |
|- ( ph -> ( P ^ K ) <_ R ) |
| 93 |
|
elfzle2 |
|- ( R e. ( 1 ... B ) -> R <_ B ) |
| 94 |
10 93
|
syl |
|- ( ph -> R <_ B ) |
| 95 |
81 82 63 92 94
|
letrd |
|- ( ph -> ( P ^ K ) <_ B ) |
| 96 |
79 74
|
nelprd |
|- ( ph -> -. P e. { 0 , 1 } ) |
| 97 |
78 96
|
eldifd |
|- ( ph -> P e. ( CC \ { 0 , 1 } ) ) |
| 98 |
63
|
recnd |
|- ( ph -> B e. CC ) |
| 99 |
29 64
|
ltned |
|- ( ph -> 0 =/= B ) |
| 100 |
99
|
necomd |
|- ( ph -> B =/= 0 ) |
| 101 |
100
|
neneqd |
|- ( ph -> -. B = 0 ) |
| 102 |
|
elsng |
|- ( B e. NN -> ( B e. { 0 } <-> B = 0 ) ) |
| 103 |
62 102
|
syl |
|- ( ph -> ( B e. { 0 } <-> B = 0 ) ) |
| 104 |
101 103
|
mtbird |
|- ( ph -> -. B e. { 0 } ) |
| 105 |
98 104
|
eldifd |
|- ( ph -> B e. ( CC \ { 0 } ) ) |
| 106 |
|
cxplogb |
|- ( ( P e. ( CC \ { 0 , 1 } ) /\ B e. ( CC \ { 0 } ) ) -> ( P ^c ( P logb B ) ) = B ) |
| 107 |
97 105 106
|
syl2anc |
|- ( ph -> ( P ^c ( P logb B ) ) = B ) |
| 108 |
95 107
|
breqtrrd |
|- ( ph -> ( P ^ K ) <_ ( P ^c ( P logb B ) ) ) |
| 109 |
80 108
|
eqbrtrd |
|- ( ph -> ( P ^c K ) <_ ( P ^c ( P logb B ) ) ) |
| 110 |
77
|
rpred |
|- ( ph -> P e. RR ) |
| 111 |
37 67 110 39 71
|
ltletrd |
|- ( ph -> 1 < P ) |
| 112 |
110 111 16 75
|
cxpled |
|- ( ph -> ( K <_ ( P logb B ) <-> ( P ^c K ) <_ ( P ^c ( P logb B ) ) ) ) |
| 113 |
109 112
|
mpbird |
|- ( ph -> K <_ ( P logb B ) ) |
| 114 |
23 39
|
rplogcld |
|- ( ph -> ( log ` 2 ) e. RR+ ) |
| 115 |
110 111
|
rplogcld |
|- ( ph -> ( log ` P ) e. RR+ ) |
| 116 |
62
|
nnrpd |
|- ( ph -> B e. RR+ ) |
| 117 |
116
|
relogcld |
|- ( ph -> ( log ` B ) e. RR ) |
| 118 |
62
|
nnge1d |
|- ( ph -> 1 <_ B ) |
| 119 |
63 118
|
logge0d |
|- ( ph -> 0 <_ ( log ` B ) ) |
| 120 |
|
2rp |
|- 2 e. RR+ |
| 121 |
120
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 122 |
121 77
|
logled |
|- ( ph -> ( 2 <_ P <-> ( log ` 2 ) <_ ( log ` P ) ) ) |
| 123 |
71 122
|
mpbid |
|- ( ph -> ( log ` 2 ) <_ ( log ` P ) ) |
| 124 |
114 115 117 119 123
|
lediv2ad |
|- ( ph -> ( ( log ` B ) / ( log ` P ) ) <_ ( ( log ` B ) / ( log ` 2 ) ) ) |
| 125 |
|
relogbval |
|- ( ( P e. ( ZZ>= ` 2 ) /\ B e. RR+ ) -> ( P logb B ) = ( ( log ` B ) / ( log ` P ) ) ) |
| 126 |
69 116 125
|
syl2anc |
|- ( ph -> ( P logb B ) = ( ( log ` B ) / ( log ` P ) ) ) |
| 127 |
126
|
eqcomd |
|- ( ph -> ( ( log ` B ) / ( log ` P ) ) = ( P logb B ) ) |
| 128 |
66
|
uzidd |
|- ( ph -> 2 e. ( ZZ>= ` 2 ) ) |
| 129 |
|
relogbval |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ B e. RR+ ) -> ( 2 logb B ) = ( ( log ` B ) / ( log ` 2 ) ) ) |
| 130 |
128 116 129
|
syl2anc |
|- ( ph -> ( 2 logb B ) = ( ( log ` B ) / ( log ` 2 ) ) ) |
| 131 |
130
|
eqcomd |
|- ( ph -> ( ( log ` B ) / ( log ` 2 ) ) = ( 2 logb B ) ) |
| 132 |
124 127 131
|
3brtr3d |
|- ( ph -> ( P logb B ) <_ ( 2 logb B ) ) |
| 133 |
16 75 76 113 132
|
letrd |
|- ( ph -> K <_ ( 2 logb B ) ) |
| 134 |
|
flge |
|- ( ( ( 2 logb B ) e. RR /\ K e. ZZ ) -> ( K <_ ( 2 logb B ) <-> K <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 135 |
76 15 134
|
syl2anc |
|- ( ph -> ( K <_ ( 2 logb B ) <-> K <_ ( |_ ` ( 2 logb B ) ) ) ) |
| 136 |
133 135
|
mpbid |
|- ( ph -> K <_ ( |_ ` ( 2 logb B ) ) ) |