Metamath Proof Explorer


Theorem aks4d1p6

Description: The maximal prime power exponent is smaller than the binary logarithm floor of B . (Contributed by metakunt, 30-Oct-2024)

Ref Expression
Hypotheses aks4d1p6.1
|- ( ph -> N e. ( ZZ>= ` 3 ) )
aks4d1p6.2
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) )
aks4d1p6.3
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) )
aks4d1p6.4
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < )
aks4d1p6.5
|- ( ph -> P e. Prime )
aks4d1p6.6
|- ( ph -> P || R )
aks4d1p6.7
|- K = ( P pCnt R )
Assertion aks4d1p6
|- ( ph -> K <_ ( |_ ` ( 2 logb B ) ) )

Proof

Step Hyp Ref Expression
1 aks4d1p6.1
 |-  ( ph -> N e. ( ZZ>= ` 3 ) )
2 aks4d1p6.2
 |-  A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) )
3 aks4d1p6.3
 |-  B = ( |^ ` ( ( 2 logb N ) ^ 5 ) )
4 aks4d1p6.4
 |-  R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < )
5 aks4d1p6.5
 |-  ( ph -> P e. Prime )
6 aks4d1p6.6
 |-  ( ph -> P || R )
7 aks4d1p6.7
 |-  K = ( P pCnt R )
8 7 a1i
 |-  ( ph -> K = ( P pCnt R ) )
9 1 2 3 4 aks4d1p4
 |-  ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) )
10 9 simpld
 |-  ( ph -> R e. ( 1 ... B ) )
11 elfznn
 |-  ( R e. ( 1 ... B ) -> R e. NN )
12 10 11 syl
 |-  ( ph -> R e. NN )
13 5 12 pccld
 |-  ( ph -> ( P pCnt R ) e. NN0 )
14 8 13 eqeltrd
 |-  ( ph -> K e. NN0 )
15 14 nn0zd
 |-  ( ph -> K e. ZZ )
16 15 zred
 |-  ( ph -> K e. RR )
17 prmnn
 |-  ( P e. Prime -> P e. NN )
18 5 17 syl
 |-  ( ph -> P e. NN )
19 18 nnred
 |-  ( ph -> P e. RR )
20 18 nngt0d
 |-  ( ph -> 0 < P )
21 3 a1i
 |-  ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
22 2re
 |-  2 e. RR
23 22 a1i
 |-  ( ph -> 2 e. RR )
24 2pos
 |-  0 < 2
25 24 a1i
 |-  ( ph -> 0 < 2 )
26 eluzelz
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. ZZ )
27 1 26 syl
 |-  ( ph -> N e. ZZ )
28 27 zred
 |-  ( ph -> N e. RR )
29 0red
 |-  ( ph -> 0 e. RR )
30 3re
 |-  3 e. RR
31 30 a1i
 |-  ( ph -> 3 e. RR )
32 3pos
 |-  0 < 3
33 32 a1i
 |-  ( ph -> 0 < 3 )
34 eluzle
 |-  ( N e. ( ZZ>= ` 3 ) -> 3 <_ N )
35 1 34 syl
 |-  ( ph -> 3 <_ N )
36 29 31 28 33 35 ltletrd
 |-  ( ph -> 0 < N )
37 1red
 |-  ( ph -> 1 e. RR )
38 1lt2
 |-  1 < 2
39 38 a1i
 |-  ( ph -> 1 < 2 )
40 37 39 ltned
 |-  ( ph -> 1 =/= 2 )
41 40 necomd
 |-  ( ph -> 2 =/= 1 )
42 23 25 28 36 41 relogbcld
 |-  ( ph -> ( 2 logb N ) e. RR )
43 5nn0
 |-  5 e. NN0
44 43 a1i
 |-  ( ph -> 5 e. NN0 )
45 42 44 reexpcld
 |-  ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR )
46 ceilcl
 |-  ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ )
47 45 46 syl
 |-  ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ )
48 21 47 eqeltrd
 |-  ( ph -> B e. ZZ )
49 48 zred
 |-  ( ph -> B e. RR )
50 9re
 |-  9 e. RR
51 50 a1i
 |-  ( ph -> 9 e. RR )
52 9pos
 |-  0 < 9
53 52 a1i
 |-  ( ph -> 0 < 9 )
54 28 35 3lexlogpow5ineq4
 |-  ( ph -> 9 < ( ( 2 logb N ) ^ 5 ) )
55 29 51 45 53 54 lttrd
 |-  ( ph -> 0 < ( ( 2 logb N ) ^ 5 ) )
56 ceilge
 |-  ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
57 45 56 syl
 |-  ( ph -> ( ( 2 logb N ) ^ 5 ) <_ ( |^ ` ( ( 2 logb N ) ^ 5 ) ) )
58 57 21 breqtrrd
 |-  ( ph -> ( ( 2 logb N ) ^ 5 ) <_ B )
59 29 45 49 55 58 ltletrd
 |-  ( ph -> 0 < B )
60 48 59 jca
 |-  ( ph -> ( B e. ZZ /\ 0 < B ) )
61 elnnz
 |-  ( B e. NN <-> ( B e. ZZ /\ 0 < B ) )
62 60 61 sylibr
 |-  ( ph -> B e. NN )
63 62 nnred
 |-  ( ph -> B e. RR )
64 62 nngt0d
 |-  ( ph -> 0 < B )
65 2z
 |-  2 e. ZZ
66 65 a1i
 |-  ( ph -> 2 e. ZZ )
67 66 zred
 |-  ( ph -> 2 e. RR )
68 prmuz2
 |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) )
69 5 68 syl
 |-  ( ph -> P e. ( ZZ>= ` 2 ) )
70 eluzle
 |-  ( P e. ( ZZ>= ` 2 ) -> 2 <_ P )
71 69 70 syl
 |-  ( ph -> 2 <_ P )
72 37 67 19 39 71 ltletrd
 |-  ( ph -> 1 < P )
73 37 72 ltned
 |-  ( ph -> 1 =/= P )
74 73 necomd
 |-  ( ph -> P =/= 1 )
75 19 20 63 64 74 relogbcld
 |-  ( ph -> ( P logb B ) e. RR )
76 67 25 63 64 41 relogbcld
 |-  ( ph -> ( 2 logb B ) e. RR )
77 18 nnrpd
 |-  ( ph -> P e. RR+ )
78 77 rpcnd
 |-  ( ph -> P e. CC )
79 77 rpne0d
 |-  ( ph -> P =/= 0 )
80 78 79 15 cxpexpzd
 |-  ( ph -> ( P ^c K ) = ( P ^ K ) )
81 19 14 reexpcld
 |-  ( ph -> ( P ^ K ) e. RR )
82 12 nnred
 |-  ( ph -> R e. RR )
83 8 oveq2d
 |-  ( ph -> ( P ^ K ) = ( P ^ ( P pCnt R ) ) )
84 pcdvds
 |-  ( ( P e. Prime /\ R e. NN ) -> ( P ^ ( P pCnt R ) ) || R )
85 5 12 84 syl2anc
 |-  ( ph -> ( P ^ ( P pCnt R ) ) || R )
86 18 nnzd
 |-  ( ph -> P e. ZZ )
87 zexpcl
 |-  ( ( P e. ZZ /\ ( P pCnt R ) e. NN0 ) -> ( P ^ ( P pCnt R ) ) e. ZZ )
88 86 13 87 syl2anc
 |-  ( ph -> ( P ^ ( P pCnt R ) ) e. ZZ )
89 dvdsle
 |-  ( ( ( P ^ ( P pCnt R ) ) e. ZZ /\ R e. NN ) -> ( ( P ^ ( P pCnt R ) ) || R -> ( P ^ ( P pCnt R ) ) <_ R ) )
90 88 12 89 syl2anc
 |-  ( ph -> ( ( P ^ ( P pCnt R ) ) || R -> ( P ^ ( P pCnt R ) ) <_ R ) )
91 85 90 mpd
 |-  ( ph -> ( P ^ ( P pCnt R ) ) <_ R )
92 83 91 eqbrtrd
 |-  ( ph -> ( P ^ K ) <_ R )
93 elfzle2
 |-  ( R e. ( 1 ... B ) -> R <_ B )
94 10 93 syl
 |-  ( ph -> R <_ B )
95 81 82 63 92 94 letrd
 |-  ( ph -> ( P ^ K ) <_ B )
96 79 74 nelprd
 |-  ( ph -> -. P e. { 0 , 1 } )
97 78 96 eldifd
 |-  ( ph -> P e. ( CC \ { 0 , 1 } ) )
98 63 recnd
 |-  ( ph -> B e. CC )
99 29 64 ltned
 |-  ( ph -> 0 =/= B )
100 99 necomd
 |-  ( ph -> B =/= 0 )
101 100 neneqd
 |-  ( ph -> -. B = 0 )
102 elsng
 |-  ( B e. NN -> ( B e. { 0 } <-> B = 0 ) )
103 62 102 syl
 |-  ( ph -> ( B e. { 0 } <-> B = 0 ) )
104 101 103 mtbird
 |-  ( ph -> -. B e. { 0 } )
105 98 104 eldifd
 |-  ( ph -> B e. ( CC \ { 0 } ) )
106 cxplogb
 |-  ( ( P e. ( CC \ { 0 , 1 } ) /\ B e. ( CC \ { 0 } ) ) -> ( P ^c ( P logb B ) ) = B )
107 97 105 106 syl2anc
 |-  ( ph -> ( P ^c ( P logb B ) ) = B )
108 95 107 breqtrrd
 |-  ( ph -> ( P ^ K ) <_ ( P ^c ( P logb B ) ) )
109 80 108 eqbrtrd
 |-  ( ph -> ( P ^c K ) <_ ( P ^c ( P logb B ) ) )
110 77 rpred
 |-  ( ph -> P e. RR )
111 37 67 110 39 71 ltletrd
 |-  ( ph -> 1 < P )
112 110 111 16 75 cxpled
 |-  ( ph -> ( K <_ ( P logb B ) <-> ( P ^c K ) <_ ( P ^c ( P logb B ) ) ) )
113 109 112 mpbird
 |-  ( ph -> K <_ ( P logb B ) )
114 23 39 rplogcld
 |-  ( ph -> ( log ` 2 ) e. RR+ )
115 110 111 rplogcld
 |-  ( ph -> ( log ` P ) e. RR+ )
116 62 nnrpd
 |-  ( ph -> B e. RR+ )
117 116 relogcld
 |-  ( ph -> ( log ` B ) e. RR )
118 62 nnge1d
 |-  ( ph -> 1 <_ B )
119 63 118 logge0d
 |-  ( ph -> 0 <_ ( log ` B ) )
120 2rp
 |-  2 e. RR+
121 120 a1i
 |-  ( ph -> 2 e. RR+ )
122 121 77 logled
 |-  ( ph -> ( 2 <_ P <-> ( log ` 2 ) <_ ( log ` P ) ) )
123 71 122 mpbid
 |-  ( ph -> ( log ` 2 ) <_ ( log ` P ) )
124 114 115 117 119 123 lediv2ad
 |-  ( ph -> ( ( log ` B ) / ( log ` P ) ) <_ ( ( log ` B ) / ( log ` 2 ) ) )
125 relogbval
 |-  ( ( P e. ( ZZ>= ` 2 ) /\ B e. RR+ ) -> ( P logb B ) = ( ( log ` B ) / ( log ` P ) ) )
126 69 116 125 syl2anc
 |-  ( ph -> ( P logb B ) = ( ( log ` B ) / ( log ` P ) ) )
127 126 eqcomd
 |-  ( ph -> ( ( log ` B ) / ( log ` P ) ) = ( P logb B ) )
128 66 uzidd
 |-  ( ph -> 2 e. ( ZZ>= ` 2 ) )
129 relogbval
 |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ B e. RR+ ) -> ( 2 logb B ) = ( ( log ` B ) / ( log ` 2 ) ) )
130 128 116 129 syl2anc
 |-  ( ph -> ( 2 logb B ) = ( ( log ` B ) / ( log ` 2 ) ) )
131 130 eqcomd
 |-  ( ph -> ( ( log ` B ) / ( log ` 2 ) ) = ( 2 logb B ) )
132 124 127 131 3brtr3d
 |-  ( ph -> ( P logb B ) <_ ( 2 logb B ) )
133 16 75 76 113 132 letrd
 |-  ( ph -> K <_ ( 2 logb B ) )
134 flge
 |-  ( ( ( 2 logb B ) e. RR /\ K e. ZZ ) -> ( K <_ ( 2 logb B ) <-> K <_ ( |_ ` ( 2 logb B ) ) ) )
135 76 15 134 syl2anc
 |-  ( ph -> ( K <_ ( 2 logb B ) <-> K <_ ( |_ ` ( 2 logb B ) ) ) )
136 133 135 mpbid
 |-  ( ph -> K <_ ( |_ ` ( 2 logb B ) ) )