Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p5.1 |
|
2 |
|
aks4d1p5.2 |
|
3 |
|
aks4d1p5.3 |
|
4 |
|
aks4d1p5.4 |
|
5 |
|
aks4d1p5.5 |
|
6 |
|
simpr |
|
7 |
1 2 3 4
|
aks4d1p4 |
|
8 |
7
|
simpld |
|
9 |
|
elfznn |
|
10 |
8 9
|
syl |
|
11 |
10
|
nnred |
|
12 |
|
eluzelz |
|
13 |
1 12
|
syl |
|
14 |
|
0red |
|
15 |
|
3re |
|
16 |
15
|
a1i |
|
17 |
13
|
zred |
|
18 |
|
3pos |
|
19 |
18
|
a1i |
|
20 |
|
eluzle |
|
21 |
1 20
|
syl |
|
22 |
14 16 17 19 21
|
ltletrd |
|
23 |
13 22
|
jca |
|
24 |
|
elnnz |
|
25 |
23 24
|
sylibr |
|
26 |
|
gcdnncl |
|
27 |
25 10 26
|
syl2anc |
|
28 |
27
|
nnred |
|
29 |
27
|
nnne0d |
|
30 |
11 28 29
|
redivcld |
|
31 |
30
|
adantr |
|
32 |
11
|
adantr |
|
33 |
31 32
|
ltnled |
|
34 |
33
|
biimprd |
|
35 |
34
|
imp |
|
36 |
4
|
a1i |
|
37 |
|
ssrab2 |
|
38 |
37
|
a1i |
|
39 |
|
elfznn |
|
40 |
39
|
adantl |
|
41 |
40
|
nnred |
|
42 |
41
|
ex |
|
43 |
42
|
ssrdv |
|
44 |
38 43
|
sstrd |
|
45 |
44
|
adantr |
|
46 |
|
fzfid |
|
47 |
46 38
|
ssfid |
|
48 |
47
|
adantr |
|
49 |
1 2 3
|
aks4d1p3 |
|
50 |
|
rabn0 |
|
51 |
49 50
|
sylibr |
|
52 |
51
|
adantr |
|
53 |
|
fiminre |
|
54 |
45 48 52 53
|
syl3anc |
|
55 |
|
breq1 |
|
56 |
55
|
notbid |
|
57 |
|
1zzd |
|
58 |
3
|
a1i |
|
59 |
|
2re |
|
60 |
59
|
a1i |
|
61 |
|
2pos |
|
62 |
61
|
a1i |
|
63 |
|
1red |
|
64 |
|
1lt2 |
|
65 |
64
|
a1i |
|
66 |
63 65
|
ltned |
|
67 |
66
|
necomd |
|
68 |
60 62 17 22 67
|
relogbcld |
|
69 |
|
5nn0 |
|
70 |
69
|
a1i |
|
71 |
68 70
|
reexpcld |
|
72 |
|
ceilcl |
|
73 |
71 72
|
syl |
|
74 |
58 73
|
eqeltrd |
|
75 |
74
|
adantr |
|
76 |
25
|
nnzd |
|
77 |
|
divgcdnnr |
|
78 |
10 76 77
|
syl2anc |
|
79 |
78
|
adantr |
|
80 |
79
|
nnzd |
|
81 |
79
|
nnge1d |
|
82 |
75
|
zred |
|
83 |
10
|
nnrpd |
|
84 |
83
|
adantr |
|
85 |
27
|
nnrpd |
|
86 |
85
|
adantr |
|
87 |
32
|
recnd |
|
88 |
84
|
rpne0d |
|
89 |
87 88
|
dividd |
|
90 |
|
simpr |
|
91 |
89 90
|
eqbrtrd |
|
92 |
32 84 86 91
|
ltdiv23d |
|
93 |
31 32 92
|
ltled |
|
94 |
|
elfzle2 |
|
95 |
8 94
|
syl |
|
96 |
95
|
adantr |
|
97 |
31 32 82 93 96
|
letrd |
|
98 |
57 75 80 81 97
|
elfzd |
|
99 |
|
simpr |
|
100 |
|
exmidd |
|
101 |
5 99 100
|
mpjaodan |
|
102 |
56 98 101
|
elrabd |
|
103 |
|
lbinfle |
|
104 |
45 54 102 103
|
syl3anc |
|
105 |
36 104
|
eqbrtrd |
|
106 |
32 31
|
lenltd |
|
107 |
105 106
|
mpbid |
|
108 |
107
|
adantr |
|
109 |
35 108
|
pm2.21dd |
|
110 |
6 109
|
pm2.61dan |
|
111 |
83
|
rpred |
|
112 |
111
|
adantr |
|
113 |
92 107
|
pm2.21dd |
|
114 |
113
|
nnrpd |
|
115 |
112
|
recnd |
|
116 |
115 88
|
dividd |
|
117 |
116 90
|
eqbrtrd |
|
118 |
112 84 114 117
|
ltdiv23d |
|
119 |
78
|
nnred |
|
120 |
119 111
|
ltnled |
|
121 |
120
|
adantr |
|
122 |
118 121
|
mpbid |
|
123 |
110 122
|
pm2.21dd |
|
124 |
|
simpr |
|
125 |
27
|
adantr |
|
126 |
125
|
nnred |
|
127 |
126
|
adantr |
|
128 |
59
|
a1i |
|
129 |
|
1red |
|
130 |
28 63
|
lenltd |
|
131 |
130
|
biimprd |
|
132 |
131
|
imp |
|
133 |
132
|
adantr |
|
134 |
64
|
a1i |
|
135 |
127 129 128 133 134
|
lelttrd |
|
136 |
|
eluzle |
|
137 |
136
|
adantl |
|
138 |
127 128 127 135 137
|
ltletrd |
|
139 |
127
|
ltnrd |
|
140 |
138 139
|
pm2.21dd |
|
141 |
|
elnn1uz2 |
|
142 |
125 141
|
sylib |
|
143 |
124 140 142
|
mpjaodan |
|
144 |
123 143
|
pm2.61dan |
|