| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks4d1p5.1 |
|- ( ph -> N e. ( ZZ>= ` 3 ) ) |
| 2 |
|
aks4d1p5.2 |
|- A = ( ( N ^ ( |_ ` ( 2 logb B ) ) ) x. prod_ k e. ( 1 ... ( |_ ` ( ( 2 logb N ) ^ 2 ) ) ) ( ( N ^ k ) - 1 ) ) |
| 3 |
|
aks4d1p5.3 |
|- B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) |
| 4 |
|
aks4d1p5.4 |
|- R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) |
| 5 |
|
aks4d1p5.5 |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ ( R / ( N gcd R ) ) || A ) -> -. ( R / ( N gcd R ) ) || A ) |
| 6 |
|
simpr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ R <_ ( R / ( N gcd R ) ) ) -> R <_ ( R / ( N gcd R ) ) ) |
| 7 |
1 2 3 4
|
aks4d1p4 |
|- ( ph -> ( R e. ( 1 ... B ) /\ -. R || A ) ) |
| 8 |
7
|
simpld |
|- ( ph -> R e. ( 1 ... B ) ) |
| 9 |
|
elfznn |
|- ( R e. ( 1 ... B ) -> R e. NN ) |
| 10 |
8 9
|
syl |
|- ( ph -> R e. NN ) |
| 11 |
10
|
nnred |
|- ( ph -> R e. RR ) |
| 12 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 13 |
1 12
|
syl |
|- ( ph -> N e. ZZ ) |
| 14 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 15 |
|
3re |
|- 3 e. RR |
| 16 |
15
|
a1i |
|- ( ph -> 3 e. RR ) |
| 17 |
13
|
zred |
|- ( ph -> N e. RR ) |
| 18 |
|
3pos |
|- 0 < 3 |
| 19 |
18
|
a1i |
|- ( ph -> 0 < 3 ) |
| 20 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 21 |
1 20
|
syl |
|- ( ph -> 3 <_ N ) |
| 22 |
14 16 17 19 21
|
ltletrd |
|- ( ph -> 0 < N ) |
| 23 |
13 22
|
jca |
|- ( ph -> ( N e. ZZ /\ 0 < N ) ) |
| 24 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
| 25 |
23 24
|
sylibr |
|- ( ph -> N e. NN ) |
| 26 |
|
gcdnncl |
|- ( ( N e. NN /\ R e. NN ) -> ( N gcd R ) e. NN ) |
| 27 |
25 10 26
|
syl2anc |
|- ( ph -> ( N gcd R ) e. NN ) |
| 28 |
27
|
nnred |
|- ( ph -> ( N gcd R ) e. RR ) |
| 29 |
27
|
nnne0d |
|- ( ph -> ( N gcd R ) =/= 0 ) |
| 30 |
11 28 29
|
redivcld |
|- ( ph -> ( R / ( N gcd R ) ) e. RR ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) e. RR ) |
| 32 |
11
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. RR ) |
| 33 |
31 32
|
ltnled |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( ( R / ( N gcd R ) ) < R <-> -. R <_ ( R / ( N gcd R ) ) ) ) |
| 34 |
33
|
biimprd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( -. R <_ ( R / ( N gcd R ) ) -> ( R / ( N gcd R ) ) < R ) ) |
| 35 |
34
|
imp |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ -. R <_ ( R / ( N gcd R ) ) ) -> ( R / ( N gcd R ) ) < R ) |
| 36 |
4
|
a1i |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R = inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) ) |
| 37 |
|
ssrab2 |
|- { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) |
| 38 |
37
|
a1i |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ ( 1 ... B ) ) |
| 39 |
|
elfznn |
|- ( o e. ( 1 ... B ) -> o e. NN ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. NN ) |
| 41 |
40
|
nnred |
|- ( ( ph /\ o e. ( 1 ... B ) ) -> o e. RR ) |
| 42 |
41
|
ex |
|- ( ph -> ( o e. ( 1 ... B ) -> o e. RR ) ) |
| 43 |
42
|
ssrdv |
|- ( ph -> ( 1 ... B ) C_ RR ) |
| 44 |
38 43
|
sstrd |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> { r e. ( 1 ... B ) | -. r || A } C_ RR ) |
| 46 |
|
fzfid |
|- ( ph -> ( 1 ... B ) e. Fin ) |
| 47 |
46 38
|
ssfid |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> { r e. ( 1 ... B ) | -. r || A } e. Fin ) |
| 49 |
1 2 3
|
aks4d1p3 |
|- ( ph -> E. r e. ( 1 ... B ) -. r || A ) |
| 50 |
|
rabn0 |
|- ( { r e. ( 1 ... B ) | -. r || A } =/= (/) <-> E. r e. ( 1 ... B ) -. r || A ) |
| 51 |
49 50
|
sylibr |
|- ( ph -> { r e. ( 1 ... B ) | -. r || A } =/= (/) ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> { r e. ( 1 ... B ) | -. r || A } =/= (/) ) |
| 53 |
|
fiminre |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ { r e. ( 1 ... B ) | -. r || A } e. Fin /\ { r e. ( 1 ... B ) | -. r || A } =/= (/) ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 54 |
45 48 52 53
|
syl3anc |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y ) |
| 55 |
|
breq1 |
|- ( r = ( R / ( N gcd R ) ) -> ( r || A <-> ( R / ( N gcd R ) ) || A ) ) |
| 56 |
55
|
notbid |
|- ( r = ( R / ( N gcd R ) ) -> ( -. r || A <-> -. ( R / ( N gcd R ) ) || A ) ) |
| 57 |
|
1zzd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> 1 e. ZZ ) |
| 58 |
3
|
a1i |
|- ( ph -> B = ( |^ ` ( ( 2 logb N ) ^ 5 ) ) ) |
| 59 |
|
2re |
|- 2 e. RR |
| 60 |
59
|
a1i |
|- ( ph -> 2 e. RR ) |
| 61 |
|
2pos |
|- 0 < 2 |
| 62 |
61
|
a1i |
|- ( ph -> 0 < 2 ) |
| 63 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 64 |
|
1lt2 |
|- 1 < 2 |
| 65 |
64
|
a1i |
|- ( ph -> 1 < 2 ) |
| 66 |
63 65
|
ltned |
|- ( ph -> 1 =/= 2 ) |
| 67 |
66
|
necomd |
|- ( ph -> 2 =/= 1 ) |
| 68 |
60 62 17 22 67
|
relogbcld |
|- ( ph -> ( 2 logb N ) e. RR ) |
| 69 |
|
5nn0 |
|- 5 e. NN0 |
| 70 |
69
|
a1i |
|- ( ph -> 5 e. NN0 ) |
| 71 |
68 70
|
reexpcld |
|- ( ph -> ( ( 2 logb N ) ^ 5 ) e. RR ) |
| 72 |
|
ceilcl |
|- ( ( ( 2 logb N ) ^ 5 ) e. RR -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 73 |
71 72
|
syl |
|- ( ph -> ( |^ ` ( ( 2 logb N ) ^ 5 ) ) e. ZZ ) |
| 74 |
58 73
|
eqeltrd |
|- ( ph -> B e. ZZ ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> B e. ZZ ) |
| 76 |
25
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 77 |
|
divgcdnnr |
|- ( ( R e. NN /\ N e. ZZ ) -> ( R / ( N gcd R ) ) e. NN ) |
| 78 |
10 76 77
|
syl2anc |
|- ( ph -> ( R / ( N gcd R ) ) e. NN ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) e. NN ) |
| 80 |
79
|
nnzd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) e. ZZ ) |
| 81 |
79
|
nnge1d |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> 1 <_ ( R / ( N gcd R ) ) ) |
| 82 |
75
|
zred |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> B e. RR ) |
| 83 |
10
|
nnrpd |
|- ( ph -> R e. RR+ ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. RR+ ) |
| 85 |
27
|
nnrpd |
|- ( ph -> ( N gcd R ) e. RR+ ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( N gcd R ) e. RR+ ) |
| 87 |
32
|
recnd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. CC ) |
| 88 |
84
|
rpne0d |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R =/= 0 ) |
| 89 |
87 88
|
dividd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / R ) = 1 ) |
| 90 |
|
simpr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> 1 < ( N gcd R ) ) |
| 91 |
89 90
|
eqbrtrd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / R ) < ( N gcd R ) ) |
| 92 |
32 84 86 91
|
ltdiv23d |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) < R ) |
| 93 |
31 32 92
|
ltled |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) <_ R ) |
| 94 |
|
elfzle2 |
|- ( R e. ( 1 ... B ) -> R <_ B ) |
| 95 |
8 94
|
syl |
|- ( ph -> R <_ B ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R <_ B ) |
| 97 |
31 32 82 93 96
|
letrd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) <_ B ) |
| 98 |
57 75 80 81 97
|
elfzd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) e. ( 1 ... B ) ) |
| 99 |
|
simpr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ -. ( R / ( N gcd R ) ) || A ) -> -. ( R / ( N gcd R ) ) || A ) |
| 100 |
|
exmidd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( ( R / ( N gcd R ) ) || A \/ -. ( R / ( N gcd R ) ) || A ) ) |
| 101 |
5 99 100
|
mpjaodan |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> -. ( R / ( N gcd R ) ) || A ) |
| 102 |
56 98 101
|
elrabd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) |
| 103 |
|
lbinfle |
|- ( ( { r e. ( 1 ... B ) | -. r || A } C_ RR /\ E. x e. { r e. ( 1 ... B ) | -. r || A } A. y e. { r e. ( 1 ... B ) | -. r || A } x <_ y /\ ( R / ( N gcd R ) ) e. { r e. ( 1 ... B ) | -. r || A } ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( N gcd R ) ) ) |
| 104 |
45 54 102 103
|
syl3anc |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> inf ( { r e. ( 1 ... B ) | -. r || A } , RR , < ) <_ ( R / ( N gcd R ) ) ) |
| 105 |
36 104
|
eqbrtrd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R <_ ( R / ( N gcd R ) ) ) |
| 106 |
32 31
|
lenltd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R <_ ( R / ( N gcd R ) ) <-> -. ( R / ( N gcd R ) ) < R ) ) |
| 107 |
105 106
|
mpbid |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> -. ( R / ( N gcd R ) ) < R ) |
| 108 |
107
|
adantr |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ -. R <_ ( R / ( N gcd R ) ) ) -> -. ( R / ( N gcd R ) ) < R ) |
| 109 |
35 108
|
pm2.21dd |
|- ( ( ( ph /\ 1 < ( N gcd R ) ) /\ -. R <_ ( R / ( N gcd R ) ) ) -> R <_ ( R / ( N gcd R ) ) ) |
| 110 |
6 109
|
pm2.61dan |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R <_ ( R / ( N gcd R ) ) ) |
| 111 |
83
|
rpred |
|- ( ph -> R e. RR ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. RR ) |
| 113 |
92 107
|
pm2.21dd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( N gcd R ) e. NN ) |
| 114 |
113
|
nnrpd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( N gcd R ) e. RR+ ) |
| 115 |
112
|
recnd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> R e. CC ) |
| 116 |
115 88
|
dividd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / R ) = 1 ) |
| 117 |
116 90
|
eqbrtrd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / R ) < ( N gcd R ) ) |
| 118 |
112 84 114 117
|
ltdiv23d |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( R / ( N gcd R ) ) < R ) |
| 119 |
78
|
nnred |
|- ( ph -> ( R / ( N gcd R ) ) e. RR ) |
| 120 |
119 111
|
ltnled |
|- ( ph -> ( ( R / ( N gcd R ) ) < R <-> -. R <_ ( R / ( N gcd R ) ) ) ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( ( R / ( N gcd R ) ) < R <-> -. R <_ ( R / ( N gcd R ) ) ) ) |
| 122 |
118 121
|
mpbid |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> -. R <_ ( R / ( N gcd R ) ) ) |
| 123 |
110 122
|
pm2.21dd |
|- ( ( ph /\ 1 < ( N gcd R ) ) -> ( N gcd R ) = 1 ) |
| 124 |
|
simpr |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) = 1 ) -> ( N gcd R ) = 1 ) |
| 125 |
27
|
adantr |
|- ( ( ph /\ -. 1 < ( N gcd R ) ) -> ( N gcd R ) e. NN ) |
| 126 |
125
|
nnred |
|- ( ( ph /\ -. 1 < ( N gcd R ) ) -> ( N gcd R ) e. RR ) |
| 127 |
126
|
adantr |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> ( N gcd R ) e. RR ) |
| 128 |
59
|
a1i |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> 2 e. RR ) |
| 129 |
|
1red |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) |
| 130 |
28 63
|
lenltd |
|- ( ph -> ( ( N gcd R ) <_ 1 <-> -. 1 < ( N gcd R ) ) ) |
| 131 |
130
|
biimprd |
|- ( ph -> ( -. 1 < ( N gcd R ) -> ( N gcd R ) <_ 1 ) ) |
| 132 |
131
|
imp |
|- ( ( ph /\ -. 1 < ( N gcd R ) ) -> ( N gcd R ) <_ 1 ) |
| 133 |
132
|
adantr |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> ( N gcd R ) <_ 1 ) |
| 134 |
64
|
a1i |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> 1 < 2 ) |
| 135 |
127 129 128 133 134
|
lelttrd |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> ( N gcd R ) < 2 ) |
| 136 |
|
eluzle |
|- ( ( N gcd R ) e. ( ZZ>= ` 2 ) -> 2 <_ ( N gcd R ) ) |
| 137 |
136
|
adantl |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> 2 <_ ( N gcd R ) ) |
| 138 |
127 128 127 135 137
|
ltletrd |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> ( N gcd R ) < ( N gcd R ) ) |
| 139 |
127
|
ltnrd |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> -. ( N gcd R ) < ( N gcd R ) ) |
| 140 |
138 139
|
pm2.21dd |
|- ( ( ( ph /\ -. 1 < ( N gcd R ) ) /\ ( N gcd R ) e. ( ZZ>= ` 2 ) ) -> ( N gcd R ) = 1 ) |
| 141 |
|
elnn1uz2 |
|- ( ( N gcd R ) e. NN <-> ( ( N gcd R ) = 1 \/ ( N gcd R ) e. ( ZZ>= ` 2 ) ) ) |
| 142 |
125 141
|
sylib |
|- ( ( ph /\ -. 1 < ( N gcd R ) ) -> ( ( N gcd R ) = 1 \/ ( N gcd R ) e. ( ZZ>= ` 2 ) ) ) |
| 143 |
124 140 142
|
mpjaodan |
|- ( ( ph /\ -. 1 < ( N gcd R ) ) -> ( N gcd R ) = 1 ) |
| 144 |
123 143
|
pm2.61dan |
|- ( ph -> ( N gcd R ) = 1 ) |