Metamath Proof Explorer


Theorem aks4d1p8d1

Description: If a prime divides one number M , but not another number N , then it divides the quotient of M and the gcd of M and N . (Contributed by Thierry Arnoux, 10-Nov-2024)

Ref Expression
Hypotheses aks4d1p8d1.1
|- ( ph -> P e. Prime )
aks4d1p8d1.2
|- ( ph -> M e. NN )
aks4d1p8d1.3
|- ( ph -> N e. NN )
aks4d1p8d1.4
|- ( ph -> P || M )
aks4d1p8d1.5
|- ( ph -> -. P || N )
Assertion aks4d1p8d1
|- ( ph -> P || ( M / ( M gcd N ) ) )

Proof

Step Hyp Ref Expression
1 aks4d1p8d1.1
 |-  ( ph -> P e. Prime )
2 aks4d1p8d1.2
 |-  ( ph -> M e. NN )
3 aks4d1p8d1.3
 |-  ( ph -> N e. NN )
4 aks4d1p8d1.4
 |-  ( ph -> P || M )
5 aks4d1p8d1.5
 |-  ( ph -> -. P || N )
6 prmnn
 |-  ( P e. Prime -> P e. NN )
7 1 6 syl
 |-  ( ph -> P e. NN )
8 7 nnzd
 |-  ( ph -> P e. ZZ )
9 gcdnncl
 |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN )
10 2 3 9 syl2anc
 |-  ( ph -> ( M gcd N ) e. NN )
11 10 nnzd
 |-  ( ph -> ( M gcd N ) e. ZZ )
12 2 nnzd
 |-  ( ph -> M e. ZZ )
13 5 intnand
 |-  ( ph -> -. ( P || M /\ P || N ) )
14 3 nnzd
 |-  ( ph -> N e. ZZ )
15 dvdsgcdb
 |-  ( ( P e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || M /\ P || N ) <-> P || ( M gcd N ) ) )
16 8 12 14 15 syl3anc
 |-  ( ph -> ( ( P || M /\ P || N ) <-> P || ( M gcd N ) ) )
17 13 16 mtbid
 |-  ( ph -> -. P || ( M gcd N ) )
18 coprm
 |-  ( ( P e. Prime /\ ( M gcd N ) e. ZZ ) -> ( -. P || ( M gcd N ) <-> ( P gcd ( M gcd N ) ) = 1 ) )
19 18 biimpa
 |-  ( ( ( P e. Prime /\ ( M gcd N ) e. ZZ ) /\ -. P || ( M gcd N ) ) -> ( P gcd ( M gcd N ) ) = 1 )
20 1 11 17 19 syl21anc
 |-  ( ph -> ( P gcd ( M gcd N ) ) = 1 )
21 gcddvds
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) )
22 12 14 21 syl2anc
 |-  ( ph -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) )
23 22 simpld
 |-  ( ph -> ( M gcd N ) || M )
24 8 11 12 20 4 23 coprmdvds2d
 |-  ( ph -> ( P x. ( M gcd N ) ) || M )
25 7 10 2 nnproddivdvdsd
 |-  ( ph -> ( ( P x. ( M gcd N ) ) || M <-> P || ( M / ( M gcd N ) ) ) )
26 24 25 mpbid
 |-  ( ph -> P || ( M / ( M gcd N ) ) )