Step |
Hyp |
Ref |
Expression |
1 |
|
aks4d1p8d1.1 |
|- ( ph -> P e. Prime ) |
2 |
|
aks4d1p8d1.2 |
|- ( ph -> M e. NN ) |
3 |
|
aks4d1p8d1.3 |
|- ( ph -> N e. NN ) |
4 |
|
aks4d1p8d1.4 |
|- ( ph -> P || M ) |
5 |
|
aks4d1p8d1.5 |
|- ( ph -> -. P || N ) |
6 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
7 |
1 6
|
syl |
|- ( ph -> P e. NN ) |
8 |
7
|
nnzd |
|- ( ph -> P e. ZZ ) |
9 |
|
gcdnncl |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |
10 |
2 3 9
|
syl2anc |
|- ( ph -> ( M gcd N ) e. NN ) |
11 |
10
|
nnzd |
|- ( ph -> ( M gcd N ) e. ZZ ) |
12 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
13 |
5
|
intnand |
|- ( ph -> -. ( P || M /\ P || N ) ) |
14 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
15 |
|
dvdsgcdb |
|- ( ( P e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( P || M /\ P || N ) <-> P || ( M gcd N ) ) ) |
16 |
8 12 14 15
|
syl3anc |
|- ( ph -> ( ( P || M /\ P || N ) <-> P || ( M gcd N ) ) ) |
17 |
13 16
|
mtbid |
|- ( ph -> -. P || ( M gcd N ) ) |
18 |
|
coprm |
|- ( ( P e. Prime /\ ( M gcd N ) e. ZZ ) -> ( -. P || ( M gcd N ) <-> ( P gcd ( M gcd N ) ) = 1 ) ) |
19 |
18
|
biimpa |
|- ( ( ( P e. Prime /\ ( M gcd N ) e. ZZ ) /\ -. P || ( M gcd N ) ) -> ( P gcd ( M gcd N ) ) = 1 ) |
20 |
1 11 17 19
|
syl21anc |
|- ( ph -> ( P gcd ( M gcd N ) ) = 1 ) |
21 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
22 |
12 14 21
|
syl2anc |
|- ( ph -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
23 |
22
|
simpld |
|- ( ph -> ( M gcd N ) || M ) |
24 |
8 11 12 20 4 23
|
coprmdvds2d |
|- ( ph -> ( P x. ( M gcd N ) ) || M ) |
25 |
7 10 2
|
nnproddivdvdsd |
|- ( ph -> ( ( P x. ( M gcd N ) ) || M <-> P || ( M / ( M gcd N ) ) ) ) |
26 |
24 25
|
mpbid |
|- ( ph -> P || ( M / ( M gcd N ) ) ) |