Metamath Proof Explorer


Theorem aks4d1p8d2

Description: Any prime power dividing a positive integer is less than that integer if that integer has another prime factor. (Contributed by metakunt, 13-Nov-2024)

Ref Expression
Hypotheses aks4d1p8d2.1 φ R
aks4d1p8d2.2 φ N
aks4d1p8d2.3 φ P
aks4d1p8d2.4 φ Q
aks4d1p8d2.5 φ P R
aks4d1p8d2.6 φ Q R
aks4d1p8d2.7 φ ¬ P N
aks4d1p8d2.8 φ Q N
Assertion aks4d1p8d2 φ P P pCnt R < R

Proof

Step Hyp Ref Expression
1 aks4d1p8d2.1 φ R
2 aks4d1p8d2.2 φ N
3 aks4d1p8d2.3 φ P
4 aks4d1p8d2.4 φ Q
5 aks4d1p8d2.5 φ P R
6 aks4d1p8d2.6 φ Q R
7 aks4d1p8d2.7 φ ¬ P N
8 aks4d1p8d2.8 φ Q N
9 prmnn P P
10 3 9 syl φ P
11 10 nnred φ P
12 3 1 pccld φ P pCnt R 0
13 11 12 reexpcld φ P P pCnt R
14 prmnn Q Q
15 4 14 syl φ Q
16 15 nnred φ Q
17 13 16 remulcld φ P P pCnt R Q
18 1 nnred φ R
19 13 recnd φ P P pCnt R
20 19 mulid1d φ P P pCnt R 1 = P P pCnt R
21 1red φ 1
22 10 nnrpd φ P +
23 12 nn0zd φ P pCnt R
24 22 23 rpexpcld φ P P pCnt R +
25 prmgt1 Q 1 < Q
26 4 25 syl φ 1 < Q
27 21 16 24 26 ltmul2dd φ P P pCnt R 1 < P P pCnt R Q
28 20 27 eqbrtrrd φ P P pCnt R < P P pCnt R Q
29 10 nnzd φ P
30 29 12 zexpcld φ P P pCnt R
31 15 nnzd φ Q
32 1 nnzd φ R
33 30 31 gcdcomd φ P P pCnt R gcd Q = Q gcd P P pCnt R
34 0lt1 0 < 1
35 34 a1i φ 0 < 1
36 0red φ 0
37 36 21 ltnled φ 0 < 1 ¬ 1 0
38 35 37 mpbid φ ¬ 1 0
39 16 recnd φ Q
40 39 exp1d φ Q 1 = Q
41 40 eqcomd φ Q = Q 1
42 41 oveq2d φ Q pCnt Q = Q pCnt Q 1
43 1zzd φ 1
44 pcid Q 1 Q pCnt Q 1 = 1
45 4 43 44 syl2anc φ Q pCnt Q 1 = 1
46 42 45 eqtrd φ Q pCnt Q = 1
47 8 adantr φ P = Q Q N
48 breq1 P = Q P N Q N
49 48 adantl φ P = Q P N Q N
50 49 bicomd φ P = Q Q N P N
51 50 biimpd φ P = Q Q N P N
52 47 51 mpd φ P = Q P N
53 7 adantr φ P = Q ¬ P N
54 52 53 pm2.65da φ ¬ P = Q
55 54 neqcomd φ ¬ Q = P
56 pcelnn P R P pCnt R P R
57 3 1 56 syl2anc φ P pCnt R P R
58 5 57 mpbird φ P pCnt R
59 prmdvdsexpb Q P P pCnt R Q P P pCnt R Q = P
60 4 3 58 59 syl3anc φ Q P P pCnt R Q = P
61 60 notbid φ ¬ Q P P pCnt R ¬ Q = P
62 55 61 mpbird φ ¬ Q P P pCnt R
63 10 12 nnexpcld φ P P pCnt R
64 pceq0 Q P P pCnt R Q pCnt P P pCnt R = 0 ¬ Q P P pCnt R
65 4 63 64 syl2anc φ Q pCnt P P pCnt R = 0 ¬ Q P P pCnt R
66 62 65 mpbird φ Q pCnt P P pCnt R = 0
67 46 66 breq12d φ Q pCnt Q Q pCnt P P pCnt R 1 0
68 67 notbid φ ¬ Q pCnt Q Q pCnt P P pCnt R ¬ 1 0
69 38 68 mpbird φ ¬ Q pCnt Q Q pCnt P P pCnt R
70 69 adantr φ p = Q ¬ Q pCnt Q Q pCnt P P pCnt R
71 simpr φ p = Q p = Q
72 71 oveq1d φ p = Q p pCnt Q = Q pCnt Q
73 71 oveq1d φ p = Q p pCnt P P pCnt R = Q pCnt P P pCnt R
74 72 73 breq12d φ p = Q p pCnt Q p pCnt P P pCnt R Q pCnt Q Q pCnt P P pCnt R
75 74 notbid φ p = Q ¬ p pCnt Q p pCnt P P pCnt R ¬ Q pCnt Q Q pCnt P P pCnt R
76 70 75 mpbird φ p = Q ¬ p pCnt Q p pCnt P P pCnt R
77 76 4 rspcime φ p ¬ p pCnt Q p pCnt P P pCnt R
78 rexnal p ¬ p pCnt Q p pCnt P P pCnt R ¬ p p pCnt Q p pCnt P P pCnt R
79 78 a1i φ p ¬ p pCnt Q p pCnt P P pCnt R ¬ p p pCnt Q p pCnt P P pCnt R
80 77 79 mpbid φ ¬ p p pCnt Q p pCnt P P pCnt R
81 pc2dvds Q P P pCnt R Q P P pCnt R p p pCnt Q p pCnt P P pCnt R
82 31 30 81 syl2anc φ Q P P pCnt R p p pCnt Q p pCnt P P pCnt R
83 82 notbid φ ¬ Q P P pCnt R ¬ p p pCnt Q p pCnt P P pCnt R
84 80 83 mpbird φ ¬ Q P P pCnt R
85 coprm Q P P pCnt R ¬ Q P P pCnt R Q gcd P P pCnt R = 1
86 4 30 85 syl2anc φ ¬ Q P P pCnt R Q gcd P P pCnt R = 1
87 84 86 mpbid φ Q gcd P P pCnt R = 1
88 33 87 eqtrd φ P P pCnt R gcd Q = 1
89 pcdvds P R P P pCnt R R
90 3 1 89 syl2anc φ P P pCnt R R
91 30 31 32 88 90 6 coprmdvds2d φ P P pCnt R Q R
92 30 31 zmulcld φ P P pCnt R Q
93 dvdsle P P pCnt R Q R P P pCnt R Q R P P pCnt R Q R
94 92 1 93 syl2anc φ P P pCnt R Q R P P pCnt R Q R
95 91 94 mpd φ P P pCnt R Q R
96 13 17 18 28 95 ltletrd φ P P pCnt R < R