| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alephon |
⊢ ( ℵ ‘ 𝐵 ) ∈ On |
| 2 |
|
onenon |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ On → ( ℵ ‘ 𝐵 ) ∈ dom card ) |
| 3 |
1 2
|
mp1i |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ℵ ‘ 𝐵 ) ∈ dom card ) |
| 4 |
|
fvex |
⊢ ( ℵ ‘ 𝐵 ) ∈ V |
| 5 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ∈ On ) |
| 6 |
|
alephgeom |
⊢ ( 𝐵 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐵 ) ) |
| 7 |
5 6
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ω ⊆ ( ℵ ‘ 𝐵 ) ) |
| 8 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ω ⊆ ( ℵ ‘ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 9 |
4 7 8
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ω ≼ ( ℵ ‘ 𝐵 ) ) |
| 10 |
|
fvex |
⊢ ( ℵ ‘ 𝐴 ) ∈ V |
| 11 |
|
ordom |
⊢ Ord ω |
| 12 |
|
2onn |
⊢ 2o ∈ ω |
| 13 |
|
ordelss |
⊢ ( ( Ord ω ∧ 2o ∈ ω ) → 2o ⊆ ω ) |
| 14 |
11 12 13
|
mp2an |
⊢ 2o ⊆ ω |
| 15 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ On ) |
| 16 |
|
alephgeom |
⊢ ( 𝐴 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ω ⊆ ( ℵ ‘ 𝐴 ) ) |
| 18 |
14 17
|
sstrid |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 2o ⊆ ( ℵ ‘ 𝐴 ) ) |
| 19 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐴 ) ∈ V → ( 2o ⊆ ( ℵ ‘ 𝐴 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) ) |
| 20 |
10 18 19
|
mpsyl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → 2o ≼ ( ℵ ‘ 𝐴 ) ) |
| 21 |
|
alephord3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) ) ) |
| 22 |
|
ssdomg |
⊢ ( ( ℵ ‘ 𝐵 ) ∈ V → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 23 |
4 22
|
ax-mp |
⊢ ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 24 |
21 23
|
biimtrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ) |
| 26 |
4
|
canth2 |
⊢ ( ℵ ‘ 𝐵 ) ≺ 𝒫 ( ℵ ‘ 𝐵 ) |
| 27 |
|
sdomdom |
⊢ ( ( ℵ ‘ 𝐵 ) ≺ 𝒫 ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐵 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 28 |
26 27
|
ax-mp |
⊢ ( ℵ ‘ 𝐵 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) |
| 29 |
|
domtr |
⊢ ( ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ( ℵ ‘ 𝐵 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) → ( ℵ ‘ 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 30 |
25 28 29
|
sylancl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 31 |
|
mappwen |
⊢ ( ( ( ( ℵ ‘ 𝐵 ) ∈ dom card ∧ ω ≼ ( ℵ ‘ 𝐵 ) ) ∧ ( 2o ≼ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≼ 𝒫 ( ℵ ‘ 𝐵 ) ) ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 32 |
3 9 20 30 31
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ) |
| 33 |
4
|
pw2en |
⊢ 𝒫 ( ℵ ‘ 𝐵 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) |
| 34 |
|
enen2 |
⊢ ( 𝒫 ( ℵ ‘ 𝐵 ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) → ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ↔ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) ) |
| 35 |
33 34
|
ax-mp |
⊢ ( ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ 𝒫 ( ℵ ‘ 𝐵 ) ↔ ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) |
| 36 |
32 35
|
sylib |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( ℵ ‘ 𝐴 ) ↑m ( ℵ ‘ 𝐵 ) ) ≈ ( 2o ↑m ( ℵ ‘ 𝐵 ) ) ) |