| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aomclem5.b |
⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } |
| 2 |
|
aomclem5.c |
⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) |
| 3 |
|
aomclem5.d |
⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) |
| 4 |
|
aomclem5.e |
⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } |
| 5 |
|
aomclem5.f |
⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } |
| 6 |
|
aomclem5.g |
⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) |
| 7 |
|
aomclem5.on |
⊢ ( 𝜑 → dom 𝑧 ∈ On ) |
| 8 |
|
aomclem5.we |
⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 9 |
|
aomclem5.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 10 |
|
aomclem5.za |
⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) |
| 11 |
|
aomclem5.y |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 ∈ On ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 = ∪ dom 𝑧 ) |
| 14 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 15 |
5 12 13 14
|
aomclem4 |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → 𝐹 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 16 |
|
iftrue |
⊢ ( dom 𝑧 = ∪ dom 𝑧 → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐹 ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐹 ) |
| 18 |
|
eqidd |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ dom 𝑧 ) ) |
| 19 |
17 18
|
weeq12d |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐹 We ( 𝑅1 ‘ dom 𝑧 ) ) ) |
| 20 |
15 19
|
mpbird |
⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 ∈ On ) |
| 22 |
|
eloni |
⊢ ( dom 𝑧 ∈ On → Ord dom 𝑧 ) |
| 23 |
|
orduniorsuc |
⊢ ( Ord dom 𝑧 → ( dom 𝑧 = ∪ dom 𝑧 ∨ dom 𝑧 = suc ∪ dom 𝑧 ) ) |
| 24 |
7 22 23
|
3syl |
⊢ ( 𝜑 → ( dom 𝑧 = ∪ dom 𝑧 ∨ dom 𝑧 = suc ∪ dom 𝑧 ) ) |
| 25 |
24
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 = suc ∪ dom 𝑧 ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → 𝐴 ∈ On ) |
| 28 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 ⊆ 𝐴 ) |
| 29 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 30 |
1 2 3 4 21 25 26 27 28 29
|
aomclem3 |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 31 |
|
iffalse |
⊢ ( ¬ dom 𝑧 = ∪ dom 𝑧 → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐸 ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐸 ) |
| 33 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ dom 𝑧 ) ) |
| 34 |
32 33
|
weeq12d |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) ) |
| 35 |
30 34
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 36 |
20 35
|
pm2.61dan |
⊢ ( 𝜑 → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 37 |
|
weinxp |
⊢ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ↔ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 38 |
36 37
|
sylib |
⊢ ( 𝜑 → ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 39 |
|
weeq1 |
⊢ ( 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) → ( 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ↔ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) ) |
| 40 |
6 39
|
ax-mp |
⊢ ( 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ↔ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 41 |
38 40
|
sylibr |
⊢ ( 𝜑 → 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ) |