Step |
Hyp |
Ref |
Expression |
1 |
|
aomclem5.b |
|- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
2 |
|
aomclem5.c |
|- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
3 |
|
aomclem5.d |
|- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
4 |
|
aomclem5.e |
|- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
5 |
|
aomclem5.f |
|- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
6 |
|
aomclem5.g |
|- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
7 |
|
aomclem5.on |
|- ( ph -> dom z e. On ) |
8 |
|
aomclem5.we |
|- ( ph -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
9 |
|
aomclem5.a |
|- ( ph -> A e. On ) |
10 |
|
aomclem5.za |
|- ( ph -> dom z C_ A ) |
11 |
|
aomclem5.y |
|- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
12 |
7
|
adantr |
|- ( ( ph /\ dom z = U. dom z ) -> dom z e. On ) |
13 |
|
simpr |
|- ( ( ph /\ dom z = U. dom z ) -> dom z = U. dom z ) |
14 |
8
|
adantr |
|- ( ( ph /\ dom z = U. dom z ) -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
15 |
5 12 13 14
|
aomclem4 |
|- ( ( ph /\ dom z = U. dom z ) -> F We ( R1 ` dom z ) ) |
16 |
|
iftrue |
|- ( dom z = U. dom z -> if ( dom z = U. dom z , F , E ) = F ) |
17 |
16
|
adantl |
|- ( ( ph /\ dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) = F ) |
18 |
|
eqidd |
|- ( ( ph /\ dom z = U. dom z ) -> ( R1 ` dom z ) = ( R1 ` dom z ) ) |
19 |
17 18
|
weeq12d |
|- ( ( ph /\ dom z = U. dom z ) -> ( if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) <-> F We ( R1 ` dom z ) ) ) |
20 |
15 19
|
mpbird |
|- ( ( ph /\ dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) ) |
21 |
7
|
adantr |
|- ( ( ph /\ -. dom z = U. dom z ) -> dom z e. On ) |
22 |
|
eloni |
|- ( dom z e. On -> Ord dom z ) |
23 |
|
orduniorsuc |
|- ( Ord dom z -> ( dom z = U. dom z \/ dom z = suc U. dom z ) ) |
24 |
7 22 23
|
3syl |
|- ( ph -> ( dom z = U. dom z \/ dom z = suc U. dom z ) ) |
25 |
24
|
orcanai |
|- ( ( ph /\ -. dom z = U. dom z ) -> dom z = suc U. dom z ) |
26 |
8
|
adantr |
|- ( ( ph /\ -. dom z = U. dom z ) -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
27 |
9
|
adantr |
|- ( ( ph /\ -. dom z = U. dom z ) -> A e. On ) |
28 |
10
|
adantr |
|- ( ( ph /\ -. dom z = U. dom z ) -> dom z C_ A ) |
29 |
11
|
adantr |
|- ( ( ph /\ -. dom z = U. dom z ) -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
30 |
1 2 3 4 21 25 26 27 28 29
|
aomclem3 |
|- ( ( ph /\ -. dom z = U. dom z ) -> E We ( R1 ` dom z ) ) |
31 |
|
iffalse |
|- ( -. dom z = U. dom z -> if ( dom z = U. dom z , F , E ) = E ) |
32 |
31
|
adantl |
|- ( ( ph /\ -. dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) = E ) |
33 |
|
eqidd |
|- ( ( ph /\ -. dom z = U. dom z ) -> ( R1 ` dom z ) = ( R1 ` dom z ) ) |
34 |
32 33
|
weeq12d |
|- ( ( ph /\ -. dom z = U. dom z ) -> ( if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) <-> E We ( R1 ` dom z ) ) ) |
35 |
30 34
|
mpbird |
|- ( ( ph /\ -. dom z = U. dom z ) -> if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) ) |
36 |
20 35
|
pm2.61dan |
|- ( ph -> if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) ) |
37 |
|
weinxp |
|- ( if ( dom z = U. dom z , F , E ) We ( R1 ` dom z ) <-> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) |
38 |
36 37
|
sylib |
|- ( ph -> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) |
39 |
|
weeq1 |
|- ( G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) -> ( G We ( R1 ` dom z ) <-> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) ) |
40 |
6 39
|
ax-mp |
|- ( G We ( R1 ` dom z ) <-> ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) We ( R1 ` dom z ) ) |
41 |
38 40
|
sylibr |
|- ( ph -> G We ( R1 ` dom z ) ) |