| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 2 |
|
asinval |
⊢ ( 1 ∈ ℂ → ( arcsin ‘ 1 ) = ( - i · ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( arcsin ‘ 1 ) = ( - i · ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
4
|
addridi |
⊢ ( i + 0 ) = i |
| 6 |
4
|
mulridi |
⊢ ( i · 1 ) = i |
| 7 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 8 |
7
|
oveq2i |
⊢ ( 1 − ( 1 ↑ 2 ) ) = ( 1 − 1 ) |
| 9 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 10 |
8 9
|
eqtri |
⊢ ( 1 − ( 1 ↑ 2 ) ) = 0 |
| 11 |
10
|
fveq2i |
⊢ ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) = ( √ ‘ 0 ) |
| 12 |
|
sqrt0 |
⊢ ( √ ‘ 0 ) = 0 |
| 13 |
11 12
|
eqtri |
⊢ ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) = 0 |
| 14 |
6 13
|
oveq12i |
⊢ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) = ( i + 0 ) |
| 15 |
|
efhalfpi |
⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i |
| 16 |
5 14 15
|
3eqtr4i |
⊢ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) = ( exp ‘ ( i · ( π / 2 ) ) ) |
| 17 |
16
|
fveq2i |
⊢ ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) = ( log ‘ ( exp ‘ ( i · ( π / 2 ) ) ) ) |
| 18 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 19 |
18
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
| 20 |
4 19
|
mulcli |
⊢ ( i · ( π / 2 ) ) ∈ ℂ |
| 21 |
|
pipos |
⊢ 0 < π |
| 22 |
|
pire |
⊢ π ∈ ℝ |
| 23 |
|
lt0neg2 |
⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) |
| 24 |
22 23
|
ax-mp |
⊢ ( 0 < π ↔ - π < 0 ) |
| 25 |
21 24
|
mpbi |
⊢ - π < 0 |
| 26 |
|
pirp |
⊢ π ∈ ℝ+ |
| 27 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
| 28 |
26 27
|
ax-mp |
⊢ ( π / 2 ) ∈ ℝ+ |
| 29 |
|
rpgt0 |
⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) |
| 30 |
28 29
|
ax-mp |
⊢ 0 < ( π / 2 ) |
| 31 |
22
|
renegcli |
⊢ - π ∈ ℝ |
| 32 |
|
0re |
⊢ 0 ∈ ℝ |
| 33 |
31 32 18
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < ( π / 2 ) ) → - π < ( π / 2 ) ) |
| 34 |
25 30 33
|
mp2an |
⊢ - π < ( π / 2 ) |
| 35 |
20
|
addlidi |
⊢ ( 0 + ( i · ( π / 2 ) ) ) = ( i · ( π / 2 ) ) |
| 36 |
35
|
fveq2i |
⊢ ( ℑ ‘ ( 0 + ( i · ( π / 2 ) ) ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 37 |
32 18
|
crimi |
⊢ ( ℑ ‘ ( 0 + ( i · ( π / 2 ) ) ) ) = ( π / 2 ) |
| 38 |
36 37
|
eqtr3i |
⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 39 |
34 38
|
breqtrri |
⊢ - π < ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 40 |
|
rphalflt |
⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) |
| 41 |
26 40
|
ax-mp |
⊢ ( π / 2 ) < π |
| 42 |
18 22 41
|
ltleii |
⊢ ( π / 2 ) ≤ π |
| 43 |
38 42
|
eqbrtri |
⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) ≤ π |
| 44 |
|
ellogrn |
⊢ ( ( i · ( π / 2 ) ) ∈ ran log ↔ ( ( i · ( π / 2 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( i · ( π / 2 ) ) ) ∧ ( ℑ ‘ ( i · ( π / 2 ) ) ) ≤ π ) ) |
| 45 |
20 39 43 44
|
mpbir3an |
⊢ ( i · ( π / 2 ) ) ∈ ran log |
| 46 |
|
logef |
⊢ ( ( i · ( π / 2 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( i · ( π / 2 ) ) ) ) = ( i · ( π / 2 ) ) ) |
| 47 |
45 46
|
ax-mp |
⊢ ( log ‘ ( exp ‘ ( i · ( π / 2 ) ) ) ) = ( i · ( π / 2 ) ) |
| 48 |
17 47
|
eqtri |
⊢ ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) = ( i · ( π / 2 ) ) |
| 49 |
48
|
oveq2i |
⊢ ( - i · ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) ) = ( - i · ( i · ( π / 2 ) ) ) |
| 50 |
4 4
|
mulneg1i |
⊢ ( - i · i ) = - ( i · i ) |
| 51 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 52 |
51
|
negeqi |
⊢ - ( i · i ) = - - 1 |
| 53 |
|
negneg1e1 |
⊢ - - 1 = 1 |
| 54 |
50 52 53
|
3eqtri |
⊢ ( - i · i ) = 1 |
| 55 |
54
|
oveq1i |
⊢ ( ( - i · i ) · ( π / 2 ) ) = ( 1 · ( π / 2 ) ) |
| 56 |
|
negicn |
⊢ - i ∈ ℂ |
| 57 |
56 4 19
|
mulassi |
⊢ ( ( - i · i ) · ( π / 2 ) ) = ( - i · ( i · ( π / 2 ) ) ) |
| 58 |
55 57
|
eqtr3i |
⊢ ( 1 · ( π / 2 ) ) = ( - i · ( i · ( π / 2 ) ) ) |
| 59 |
19
|
mullidi |
⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
| 60 |
58 59
|
eqtr3i |
⊢ ( - i · ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 61 |
3 49 60
|
3eqtri |
⊢ ( arcsin ‘ 1 ) = ( π / 2 ) |