Metamath Proof Explorer


Theorem asin1

Description: The arcsine of 1 is _pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asin1 arcsin1=π2

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 asinval 1arcsin1=ilogi1+112
3 1 2 ax-mp arcsin1=ilogi1+112
4 ax-icn i
5 4 addridi i+0=i
6 4 mulridi i1=i
7 sq1 12=1
8 7 oveq2i 112=11
9 1m1e0 11=0
10 8 9 eqtri 112=0
11 10 fveq2i 112=0
12 sqrt0 0=0
13 11 12 eqtri 112=0
14 6 13 oveq12i i1+112=i+0
15 efhalfpi eiπ2=i
16 5 14 15 3eqtr4i i1+112=eiπ2
17 16 fveq2i logi1+112=logeiπ2
18 halfpire π2
19 18 recni π2
20 4 19 mulcli iπ2
21 pipos 0<π
22 pire π
23 lt0neg2 π0<ππ<0
24 22 23 ax-mp 0<ππ<0
25 21 24 mpbi π<0
26 pirp π+
27 rphalfcl π+π2+
28 26 27 ax-mp π2+
29 rpgt0 π2+0<π2
30 28 29 ax-mp 0<π2
31 22 renegcli π
32 0re 0
33 31 32 18 lttri π<00<π2π<π2
34 25 30 33 mp2an π<π2
35 20 addlidi 0+iπ2=iπ2
36 35 fveq2i 0+iπ2=iπ2
37 32 18 crimi 0+iπ2=π2
38 36 37 eqtr3i iπ2=π2
39 34 38 breqtrri π<iπ2
40 rphalflt π+π2<π
41 26 40 ax-mp π2<π
42 18 22 41 ltleii π2π
43 38 42 eqbrtri iπ2π
44 ellogrn iπ2ranlogiπ2π<iπ2iπ2π
45 20 39 43 44 mpbir3an iπ2ranlog
46 logef iπ2ranloglogeiπ2=iπ2
47 45 46 ax-mp logeiπ2=iπ2
48 17 47 eqtri logi1+112=iπ2
49 48 oveq2i ilogi1+112=iiπ2
50 4 4 mulneg1i ii=ii
51 ixi ii=1
52 51 negeqi ii=-1
53 negneg1e1 -1=1
54 50 52 53 3eqtri ii=1
55 54 oveq1i iiπ2=1π2
56 negicn i
57 56 4 19 mulassi iiπ2=iiπ2
58 55 57 eqtr3i 1π2=iiπ2
59 19 mullidi 1π2=π2
60 58 59 eqtr3i iiπ2=π2
61 3 49 60 3eqtri arcsin1=π2