Step |
Hyp |
Ref |
Expression |
1 |
|
assa2ass.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
assa2ass.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
assa2ass.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
assa2ass.m |
⊢ ∗ = ( .r ‘ 𝐹 ) |
5 |
|
assa2ass.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
assa2ass.t |
⊢ × = ( .r ‘ 𝑊 ) |
7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ AssAlg ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐵 ) |
10 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑋 ∈ 𝑉 ) |
12 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
14 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝐶 ∈ 𝐵 ) |
16 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) |
17 |
16
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → 𝑌 ∈ 𝑉 ) |
18 |
1 2 5 3 13 15 17
|
lmodvscld |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐶 · 𝑌 ) ∈ 𝑉 ) |
19 |
1 2 3 5 6
|
assaass |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) ) |
20 |
7 9 11 18 19
|
syl13anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) ) |
21 |
1 2 3 5 6
|
assaassr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝐶 · 𝑌 ) ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) ) |
23 |
7 9 11 18 22
|
syl13anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 × ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) ) |
24 |
1 2 5 3 4
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) = ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝐶 · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) ) |
27 |
13 9 15 17 26
|
syl13anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) ) |
28 |
2
|
assasca |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
29 |
28
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐹 ∈ Ring ) |
30 |
8
|
adantl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) |
31 |
14
|
adantl |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐶 ∈ 𝐵 ) |
32 |
3 4 29 30 31
|
ringcld |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐴 ∗ 𝐶 ) ∈ 𝐵 ) |
33 |
32
|
3adant3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 ∗ 𝐶 ) ∈ 𝐵 ) |
34 |
1 2 3 5 6
|
assaassr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝐴 ∗ 𝐶 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
35 |
7 33 11 17 34
|
syl13anc |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( ( 𝐴 ∗ 𝐶 ) · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
36 |
27 35
|
eqtrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 × ( 𝐴 · ( 𝐶 · 𝑌 ) ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |
37 |
20 23 36
|
3eqtrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × ( 𝐶 · 𝑌 ) ) = ( ( 𝐴 ∗ 𝐶 ) · ( 𝑋 × 𝑌 ) ) ) |