| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zfpow | ⊢ ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) | 
						
							| 2 |  | 19.8a | ⊢ ( 𝑤  ∈  𝑦  →  ∃ 𝑧 𝑤  ∈  𝑦 ) | 
						
							| 3 |  | sp | ⊢ ( ∀ 𝑦 𝑤  ∈  𝑧  →  𝑤  ∈  𝑧 ) | 
						
							| 4 | 2 3 | imim12i | ⊢ ( ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝑧 ) ) | 
						
							| 5 | 4 | alimi | ⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  ∀ 𝑤 ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝑧 ) ) | 
						
							| 6 | 5 | imim1i | ⊢ ( ( ∀ 𝑤 ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  →  ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) ) | 
						
							| 7 | 6 | alimi | ⊢ ( ∀ 𝑦 ( ∀ 𝑤 ( 𝑤  ∈  𝑦  →  𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  →  ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) ) | 
						
							| 8 | 1 7 | eximii | ⊢ ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) | 
						
							| 9 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 10 |  | nfnae | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑥 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 12 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 13 |  | nfnae | ⊢ Ⅎ 𝑦 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 14 | 12 13 | nfan | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑤 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 ) | 
						
							| 16 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑦 | 
						
							| 17 |  | nfcvd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 18 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦 ) | 
						
							| 19 | 17 18 | nfeld | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑤  ∈  𝑦 ) | 
						
							| 20 | 16 19 | nfexd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 ∃ 𝑧 𝑤  ∈  𝑦 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∃ 𝑧 𝑤  ∈  𝑦 ) | 
						
							| 22 |  | nfcvd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑤 ) | 
						
							| 23 |  | nfcvf | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑧 ) | 
						
							| 24 | 22 23 | nfeld | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 𝑤  ∈  𝑧 ) | 
						
							| 25 | 13 24 | nfald | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑥 ∀ 𝑦 𝑤  ∈  𝑧 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑦 𝑤  ∈  𝑧 ) | 
						
							| 27 | 21 26 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 ) ) | 
						
							| 28 | 15 27 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 ) ) | 
						
							| 29 | 18 17 | nfeld | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦  ∈  𝑤 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 𝑦  ∈  𝑤 ) | 
						
							| 31 | 28 30 | nfimd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) ) | 
						
							| 32 | 14 31 | nfald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑥 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 ) ) | 
						
							| 33 |  | nfeqf2 | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 𝑤  =  𝑥 ) | 
						
							| 34 | 33 | naecoms | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑦 𝑤  =  𝑥 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  Ⅎ 𝑦 𝑤  =  𝑥 ) | 
						
							| 36 | 14 35 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 ) | 
						
							| 37 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑥 𝑥  =  𝑧 | 
						
							| 38 |  | nfeqf2 | ⊢ ( ¬  ∀ 𝑧 𝑧  =  𝑥  →  Ⅎ 𝑧 𝑤  =  𝑥 ) | 
						
							| 39 | 38 | naecoms | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  Ⅎ 𝑧 𝑤  =  𝑥 ) | 
						
							| 40 | 37 39 | nfan1 | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  𝑤  =  𝑥 ) | 
						
							| 41 |  | elequ1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  𝑤  =  𝑥 )  →  ( 𝑤  ∈  𝑦  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 43 | 40 42 | exbid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑧  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑧 𝑤  ∈  𝑦  ↔  ∃ 𝑧 𝑥  ∈  𝑦 ) ) | 
						
							| 44 | 43 | adantll | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∃ 𝑧 𝑤  ∈  𝑦  ↔  ∃ 𝑧 𝑥  ∈  𝑦 ) ) | 
						
							| 45 | 12 34 | nfan1 | ⊢ Ⅎ 𝑦 ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑥 ) | 
						
							| 46 |  | elequ1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ∈  𝑧  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( 𝑤  ∈  𝑧  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 48 | 45 47 | albid | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑦 𝑤  ∈  𝑧  ↔  ∀ 𝑦 𝑥  ∈  𝑧 ) ) | 
						
							| 49 | 48 | adantlr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑦 𝑤  ∈  𝑧  ↔  ∀ 𝑦 𝑥  ∈  𝑧 ) ) | 
						
							| 50 | 44 49 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  ↔  ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 51 | 50 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  ↔  ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) ) | 
						
							| 52 | 11 27 51 | cbvald | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  ↔  ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  ↔  ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 ) ) ) | 
						
							| 54 |  | elequ2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( 𝑦  ∈  𝑤  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 56 | 53 55 | imbi12d | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 57 | 36 56 | albid | ⊢ ( ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  ∧  𝑤  =  𝑥 )  →  ( ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 58 | 57 | ex | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( 𝑤  =  𝑥  →  ( ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) ) | 
						
							| 59 | 11 32 58 | cbvexd | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ( ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤  ∈  𝑦  →  ∀ 𝑦 𝑤  ∈  𝑧 )  →  𝑦  ∈  𝑤 )  ↔  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 60 | 8 59 | mpbii | ⊢ ( ( ¬  ∀ 𝑥 𝑥  =  𝑦  ∧  ¬  ∀ 𝑥 𝑥  =  𝑧 )  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ¬  ∀ 𝑥 𝑥  =  𝑧  →  ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥  ∈  𝑦  →  ∀ 𝑦 𝑥  ∈  𝑧 )  →  𝑦  ∈  𝑥 ) ) ) |