| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zfpow |
⊢ ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) |
| 2 |
|
19.8a |
⊢ ( 𝑤 ∈ 𝑦 → ∃ 𝑧 𝑤 ∈ 𝑦 ) |
| 3 |
|
sp |
⊢ ( ∀ 𝑦 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑧 ) |
| 4 |
2 3
|
imim12i |
⊢ ( ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) ) |
| 5 |
4
|
alimi |
⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) ) |
| 6 |
5
|
imim1i |
⊢ ( ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) → ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 7 |
6
|
alimi |
⊢ ( ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) → ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 8 |
1 7
|
eximii |
⊢ ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) |
| 9 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 10 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 11 |
9 10
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 12 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 13 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 14 |
12 13
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 16 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 17 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 ) |
| 18 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) |
| 19 |
17 18
|
nfeld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
| 20 |
16 19
|
nfexd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∃ 𝑧 𝑤 ∈ 𝑦 ) |
| 21 |
20
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑧 𝑤 ∈ 𝑦 ) |
| 22 |
|
nfcvd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑤 ) |
| 23 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) |
| 24 |
22 23
|
nfeld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
| 25 |
13 24
|
nfald |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 ∀ 𝑦 𝑤 ∈ 𝑧 ) |
| 26 |
25
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 𝑤 ∈ 𝑧 ) |
| 27 |
21 26
|
nfimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ) |
| 28 |
15 27
|
nfald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ) |
| 29 |
18 17
|
nfeld |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
| 30 |
29
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
| 31 |
28 30
|
nfimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 32 |
14 31
|
nfald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 33 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 34 |
33
|
naecoms |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 35 |
34
|
adantr |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 36 |
14 35
|
nfan1 |
⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 37 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 |
| 38 |
|
nfeqf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑤 = 𝑥 ) |
| 39 |
38
|
naecoms |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑤 = 𝑥 ) |
| 40 |
37 39
|
nfan1 |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥 ) |
| 41 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 42 |
41
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 43 |
40 42
|
exbid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑧 𝑤 ∈ 𝑦 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 44 |
43
|
adantll |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑧 𝑤 ∈ 𝑦 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 45 |
12 34
|
nfan1 |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥 ) |
| 46 |
|
elequ1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
| 48 |
45 47
|
albid |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 𝑤 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 49 |
48
|
adantlr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 𝑤 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 50 |
44 49
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 51 |
50
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) ) |
| 52 |
11 27 51
|
cbvald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 54 |
|
elequ2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 56 |
53 55
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 57 |
36 56
|
albid |
⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 58 |
57
|
ex |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 59 |
11 32 58
|
cbvexd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 60 |
8 59
|
mpbii |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 61 |
60
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |