Metamath Proof Explorer


Theorem ballotlemirc

Description: Applying R does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
Assertion ballotlemirc ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼 ‘ ( 𝑅𝐶 ) ) = ( 𝐼𝐶 ) )

Proof

Step Hyp Ref Expression
1 ballotth.m 𝑀 ∈ ℕ
2 ballotth.n 𝑁 ∈ ℕ
3 ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
4 ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
5 ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
6 ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
7 ballotth.mgtn 𝑁 < 𝑀
8 ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
9 ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
10 ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
11 1 2 3 4 5 6 7 8 9 10 ballotlemrc ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝑅𝐶 ) ∈ ( 𝑂𝐸 ) )
12 1 2 3 4 5 6 7 8 ballotlemi ( ( 𝑅𝐶 ) ∈ ( 𝑂𝐸 ) → ( 𝐼 ‘ ( 𝑅𝐶 ) ) = inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
13 11 12 syl ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼 ‘ ( 𝑅𝐶 ) ) = inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
14 ltso < Or ℝ
15 14 a1i ( 𝐶 ∈ ( 𝑂𝐸 ) → < Or ℝ )
16 1 2 3 4 5 6 7 8 ballotlemiex ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹𝐶 ) ‘ ( 𝐼𝐶 ) ) = 0 ) )
17 16 simpld ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) )
18 elfzelz ( ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼𝐶 ) ∈ ℤ )
19 17 18 syl ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ ℤ )
20 19 zred ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ ℝ )
21 eqid ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣𝑢 ) ) − ( ♯ ‘ ( 𝑣𝑢 ) ) ) ) = ( 𝑢 ∈ Fin , 𝑣 ∈ Fin ↦ ( ( ♯ ‘ ( 𝑣𝑢 ) ) − ( ♯ ‘ ( 𝑣𝑢 ) ) ) )
22 1 2 3 4 5 6 7 8 9 10 21 ballotlemfrci ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ ( 𝐼𝐶 ) ) = 0 )
23 fveqeq2 ( 𝑘 = ( 𝐼𝐶 ) → ( ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 ↔ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ ( 𝐼𝐶 ) ) = 0 ) )
24 23 elrab ( ( 𝐼𝐶 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } ↔ ( ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ ( 𝐼𝐶 ) ) = 0 ) )
25 17 22 24 sylanbrc ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } )
26 elrabi ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } → 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) )
27 26 anim2i ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } ) → ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) )
28 simpr ( ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 < ( 𝐼𝐶 ) ) → 𝑦 < ( 𝐼𝐶 ) )
29 1 2 3 4 5 6 7 8 9 10 ballotlemfrcn0 ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑦 < ( 𝐼𝐶 ) ) → ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑦 ) ≠ 0 )
30 29 neneqd ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑦 < ( 𝐼𝐶 ) ) → ¬ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑦 ) = 0 )
31 fveqeq2 ( 𝑘 = 𝑦 → ( ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 ↔ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑦 ) = 0 ) )
32 31 elrab ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } ↔ ( 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑦 ) = 0 ) )
33 32 simprbi ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } → ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑦 ) = 0 )
34 30 33 nsyl ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 𝑦 < ( 𝐼𝐶 ) ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } )
35 34 3expa ( ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 < ( 𝐼𝐶 ) ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } )
36 28 35 syldan ( ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 < ( 𝐼𝐶 ) ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } )
37 36 ex ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 < ( 𝐼𝐶 ) → ¬ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } ) )
38 37 con2d ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } → ¬ 𝑦 < ( 𝐼𝐶 ) ) )
39 38 imp ( ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) ∧ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } ) → ¬ 𝑦 < ( 𝐼𝐶 ) )
40 27 39 sylancom ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } ) → ¬ 𝑦 < ( 𝐼𝐶 ) )
41 15 20 25 40 infmin ( 𝐶 ∈ ( 𝑂𝐸 ) → inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ ( 𝑅𝐶 ) ) ‘ 𝑘 ) = 0 } , ℝ , < ) = ( 𝐼𝐶 ) )
42 13 41 eqtrd ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼 ‘ ( 𝑅𝐶 ) ) = ( 𝐼𝐶 ) )