Step |
Hyp |
Ref |
Expression |
1 |
|
ballotth.m |
⊢ 𝑀 ∈ ℕ |
2 |
|
ballotth.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
ballotth.o |
⊢ 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 } |
4 |
|
ballotth.p |
⊢ 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) ) |
5 |
|
ballotth.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) ) |
6 |
|
ballotth.e |
⊢ 𝐸 = { 𝑐 ∈ 𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } |
7 |
|
ballotth.mgtn |
⊢ 𝑁 < 𝑀 |
8 |
|
ballotth.i |
⊢ 𝐼 = ( 𝑐 ∈ ( 𝑂 ∖ 𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) ) |
9 |
|
fzfi |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin |
10 |
|
ssrab2 |
⊢ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) |
11 |
|
ssfi |
⊢ ( ( ( 1 ... ( 𝑀 + 𝑁 ) ) ∈ Fin ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∈ Fin ) |
12 |
9 10 11
|
mp2an |
⊢ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∈ Fin |
13 |
12
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∈ Fin ) |
14 |
1 2 3 4 5 6 7
|
ballotlem5 |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ∃ 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
15 |
|
rabn0 |
⊢ ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ≠ ∅ ↔ ∃ 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 ) |
16 |
14 15
|
sylibr |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ≠ ∅ ) |
17 |
|
fz1ssnn |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ⊆ ℕ |
18 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
19 |
17 18
|
sstri |
⊢ ( 1 ... ( 𝑀 + 𝑁 ) ) ⊆ ℝ |
20 |
10 19
|
sstri |
⊢ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ℝ |
21 |
20
|
a1i |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ℝ ) |
22 |
13 16 21
|
3jca |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∈ Fin ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ≠ ∅ ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ℝ ) ) |
23 |
|
ltso |
⊢ < Or ℝ |
24 |
22 23
|
jctil |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ( < Or ℝ ∧ ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∈ Fin ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ≠ ∅ ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ℝ ) ) ) |
25 |
|
fiinf2g |
⊢ ( ( < Or ℝ ∧ ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∈ Fin ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ≠ ∅ ∧ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ⊆ ℝ ) ) → ∃ 𝑧 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) |
26 |
20
|
sseli |
⊢ ( 𝑧 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } → 𝑧 ∈ ℝ ) |
27 |
26
|
anim1i |
⊢ ( ( 𝑧 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ∧ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) → ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) ) |
28 |
27
|
reximi2 |
⊢ ( ∃ 𝑧 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) |
29 |
24 25 28
|
3syl |
⊢ ( 𝐶 ∈ ( 𝑂 ∖ 𝐸 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑤 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } ¬ 𝑤 < 𝑧 ∧ ∀ 𝑤 ∈ ℝ ( 𝑧 < 𝑤 → ∃ 𝑦 ∈ { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹 ‘ 𝐶 ) ‘ 𝑘 ) = 0 } 𝑦 < 𝑤 ) ) ) |