Metamath Proof Explorer


Theorem ballotlemsup

Description: The set of zeroes of F satisfies the conditions to have a supremum. (Contributed by Thierry Arnoux, 1-Dec-2016) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
Assertion ballotlemsup COEzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 fzfi 1M+NFin
10 ssrab2 k1M+N|FCk=01M+N
11 ssfi 1M+NFink1M+N|FCk=01M+Nk1M+N|FCk=0Fin
12 9 10 11 mp2an k1M+N|FCk=0Fin
13 12 a1i COEk1M+N|FCk=0Fin
14 1 2 3 4 5 6 7 ballotlem5 COEk1M+NFCk=0
15 rabn0 k1M+N|FCk=0k1M+NFCk=0
16 14 15 sylibr COEk1M+N|FCk=0
17 fz1ssnn 1M+N
18 nnssre
19 17 18 sstri 1M+N
20 10 19 sstri k1M+N|FCk=0
21 20 a1i COEk1M+N|FCk=0
22 13 16 21 3jca COEk1M+N|FCk=0Fink1M+N|FCk=0k1M+N|FCk=0
23 ltso <Or
24 22 23 jctil COE<Ork1M+N|FCk=0Fink1M+N|FCk=0k1M+N|FCk=0
25 fiinf2g <Ork1M+N|FCk=0Fink1M+N|FCk=0k1M+N|FCk=0zk1M+N|FCk=0wk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w
26 20 sseli zk1M+N|FCk=0z
27 26 anim1i zk1M+N|FCk=0wk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<wzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w
28 27 reximi2 zk1M+N|FCk=0wk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<wzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w
29 24 25 28 3syl COEzwk1M+N|FCk=0¬w<zwz<wyk1M+N|FCk=0y<w