Metamath Proof Explorer
		
		
		
		Description:  Special case of bj-restsn , bj-restsnss , and bj-rest10 .
     (Contributed by BJ, 27-Apr-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | bj-restsn10 | ⊢  ( 𝑋  ∈  𝑉  →  ( { 𝑋 }  ↾t  ∅ )  =  { ∅ } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ss | ⊢ ∅  ⊆  𝑋 | 
						
							| 2 |  | bj-restsnss | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∅  ⊆  𝑋 )  →  ( { 𝑋 }  ↾t  ∅ )  =  { ∅ } ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑋  ∈  𝑉  →  ( { 𝑋 }  ↾t  ∅ )  =  { ∅ } ) |