| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝐼  ∈  ℕ0 )  →  ( 2 ↑ 𝐼 )  ∈  ℕ ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2 ↑ 𝐼 )  ∈  ℕ ) | 
						
							| 4 |  | blennn | ⊢ ( ( 2 ↑ 𝐼 )  ∈  ℕ  →  ( #b ‘ ( 2 ↑ 𝐼 ) )  =  ( ( ⌊ ‘ ( 2  logb  ( 2 ↑ 𝐼 ) ) )  +  1 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐼  ∈  ℕ0  →  ( #b ‘ ( 2 ↑ 𝐼 ) )  =  ( ( ⌊ ‘ ( 2  logb  ( 2 ↑ 𝐼 ) ) )  +  1 ) ) | 
						
							| 6 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 7 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( 𝐼  ∈  ℕ0  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 9 |  | nn0z | ⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℤ ) | 
						
							| 10 |  | nnlogbexp | ⊢ ( ( 2  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐼  ∈  ℤ )  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  =  𝐼 ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( 𝐼  ∈  ℕ0  →  ( 2  logb  ( 2 ↑ 𝐼 ) )  =  𝐼 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ ( 2  logb  ( 2 ↑ 𝐼 ) ) )  =  ( ⌊ ‘ 𝐼 ) ) | 
						
							| 13 |  | flid | ⊢ ( 𝐼  ∈  ℤ  →  ( ⌊ ‘ 𝐼 )  =  𝐼 ) | 
						
							| 14 | 9 13 | syl | ⊢ ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ 𝐼 )  =  𝐼 ) | 
						
							| 15 | 12 14 | eqtrd | ⊢ ( 𝐼  ∈  ℕ0  →  ( ⌊ ‘ ( 2  logb  ( 2 ↑ 𝐼 ) ) )  =  𝐼 ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝐼  ∈  ℕ0  →  ( ( ⌊ ‘ ( 2  logb  ( 2 ↑ 𝐼 ) ) )  +  1 )  =  ( 𝐼  +  1 ) ) | 
						
							| 17 | 5 16 | eqtrd | ⊢ ( 𝐼  ∈  ℕ0  →  ( #b ‘ ( 2 ↑ 𝐼 ) )  =  ( 𝐼  +  1 ) ) |