Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
⊢ 2 ∈ ℕ |
2 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ) → ( 2 ↑ 𝐼 ) ∈ ℕ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 ↑ 𝐼 ) ∈ ℕ ) |
4 |
|
blennn |
⊢ ( ( 2 ↑ 𝐼 ) ∈ ℕ → ( #b ‘ ( 2 ↑ 𝐼 ) ) = ( ( ⌊ ‘ ( 2 logb ( 2 ↑ 𝐼 ) ) ) + 1 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( #b ‘ ( 2 ↑ 𝐼 ) ) = ( ( ⌊ ‘ ( 2 logb ( 2 ↑ 𝐼 ) ) ) + 1 ) ) |
6 |
|
2z |
⊢ 2 ∈ ℤ |
7 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
8 |
6 7
|
mp1i |
⊢ ( 𝐼 ∈ ℕ0 → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
9 |
|
nn0z |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) |
10 |
|
nnlogbexp |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐼 ∈ ℤ ) → ( 2 logb ( 2 ↑ 𝐼 ) ) = 𝐼 ) |
11 |
8 9 10
|
syl2anc |
⊢ ( 𝐼 ∈ ℕ0 → ( 2 logb ( 2 ↑ 𝐼 ) ) = 𝐼 ) |
12 |
11
|
fveq2d |
⊢ ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ ( 2 logb ( 2 ↑ 𝐼 ) ) ) = ( ⌊ ‘ 𝐼 ) ) |
13 |
|
flid |
⊢ ( 𝐼 ∈ ℤ → ( ⌊ ‘ 𝐼 ) = 𝐼 ) |
14 |
9 13
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ 𝐼 ) = 𝐼 ) |
15 |
12 14
|
eqtrd |
⊢ ( 𝐼 ∈ ℕ0 → ( ⌊ ‘ ( 2 logb ( 2 ↑ 𝐼 ) ) ) = 𝐼 ) |
16 |
15
|
oveq1d |
⊢ ( 𝐼 ∈ ℕ0 → ( ( ⌊ ‘ ( 2 logb ( 2 ↑ 𝐼 ) ) ) + 1 ) = ( 𝐼 + 1 ) ) |
17 |
5 16
|
eqtrd |
⊢ ( 𝐼 ∈ ℕ0 → ( #b ‘ ( 2 ↑ 𝐼 ) ) = ( 𝐼 + 1 ) ) |